Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

Product Information in this Catalog

Product information in this catalog is as of January 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes:

- 1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

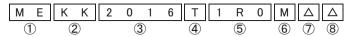
Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement

■ TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export


Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES)

PARTS NUMBER

* Operating Temp.:-40~+125°C (Including self-generated heat)

①Series name

Code	Series name
ME	Metal Wire-wound Chip Power Inductor

(2)Dimensions (1)				
	Code	Dimensions (T) [mm]		
	KK	1.0		

3Dimensions (L × W)

Code	Dimensions (L × W) [mm]
2016	2.0 × 1.6
2520	2.5 × 2.0

4)Packaging

Code	Packaging
Т	Taping

⑤Nominal inductance

△=Blank space

Code (example)	Nominal inductance[μ H]
R47	0.47
1R0	1.0
4R7	4.7

※R=Decimal point

6 Inductance tolerance

Code	Inductance tolerance
М	±20%

7Special code

- 1	
Code	Special code
Δ	Standard

8Internal code

■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

· Applicable soldering process to these products is reflow soldering only.

	Туре	Α	В	С
	2016	0.7	0.8	1.8
	2520	0.9	1.0	2.2
				Unit:mm

Standard quantity[pcs] Туре W **Taping** 2.0±0.2 1.6±0.2 1.0 max 0.5±0.3 MEKK2016 3000 (0.079 ± 0.008) (0.063 ± 0.008) (0.020 ± 0.012) (0.039 max) 2.5 ± 0.2 2.0 ± 0.2 1.0 max 0.65 ± 0.3 MEKK2520 3000 (0.098 ± 0.008) (0.079 ± 0.008) (0.039 max) (0.026 ± 0.012)

Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/)

MEKK2016 type	type 【Thickness: 1.0mm max.】							
		Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Managina
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MEKK2016TR47M	RoHS	0.47	±20%	-	0.030	4,500	4,300	1
MEKK2016TR68M	RoHS	0.68	±20%	-	0.052	3,800	3,300	1
MEKK2016T1R0M	RoHS	1.0	±20%	-	0.060	3,600	3,100	1
MEKK2016T2R2M	RoHS	2.2	±20%	-	0.150	2,400	1,900	1

MEKK2520 type [Thickness:1.0mm max.]

	Naminal industrial		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Maranatan	
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MEKK2520TR33M	RoHS	0.33	±20%	-	0.022	6,400	5,100	1
MEKK2520TR47M	RoHS	0.47	±20%	-	0.025	5,900	4,800	1
MEKK2520T1R0M	RoHS	1.0	±20%	-	0.053	4,300	3,300	1
MEKK2520T1R5M	RoHS	1.5	±20%	-	0.069	3,200	2,800	1
MEKK2520T2R2M	RoHS	2.2	±20%	-	0.097	3,100	2,400	1
MEKK2520T4R7M	RoHS	4.7	±20%	-	0.240	1,600	1,500	1

- *X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- *\times The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)
- 💥) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

※) Idc2 Measurement board data Material:FR4

Board dimensions: 100 × 50 × 1.6t mm

Pattern dimensions: $45 \times 45 \,$ mm (Double side board)

Pattern thickness: 70 μ m

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME-H SERIES)

REFLOW

PARTS NUMBER

* Operating Temp.: -40~+125°C (Including self-generated heat)

△=Blank space

①Series name

<u> </u>	
Code	Series name
ME	Metal Wire-wound Chip Power Inductor

②Dimensions(T)

Z/Dimensions(1)					
	Code	Dimensions (T) [mm]			
	HK	0.8			
	KK	1.0			

⑤Nominal inductance

Code (example)	Nominal inductance [μ H]
R47	0.47
1R0	1.0
2R2	2.2

☆R=Decimal point

3Dimensions (L × W)

2012 2.0 × 1.2	
2016 2.0 × 1.6	
2520 2.5 × 2.0	

6 Inductance tolerance

Oodc	inductance tolerance
М	±20%

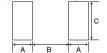
7Special code

<u> </u>	
Code	Special code
Δ	Standard

8 Internal code

4Packaging

_ 0 0	
Code	Packaging
Н	Taping(special specification)


■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

• Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С
2012	0.7	0.8	1.4
2016	0.7	0.8	1.8
2520	0.9	1.0	2.2

Unit:mm

Туре	L	W	Т	е	Standard quantity[pcs] Taping
MEHK2012H	2.0±0.2 (0.079±0.008)	1.2±0.2 (0.047±0.008)	0.8 max (0.031 max)	0.5±0.3 (0.020±0.012)	3000
MEKK2012H	2.0±0.2 (0.079±0.008)	1.2±0.2 (0.047±0.008)	1.0 max (0.039 max)	0.5±0.3 (0.020±0.012)	3000
MEKK2016H	2.0±0.2 (0.079±0.008)	1.6±0.2 (0.063±0.008)	1.0 max (0.039 max)	0.5±0.3 (0.020±0.012)	3000
MEKK2520H	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.0 max (0.039 max)	0.65±0.3 (0.026±0.012)	3000

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

●MEHK2012H type 【Thickness:0.8mm max.】									
			Manada al de de akanana		Self-resonant	DC Resistance	Rated current	※) [mA](max.)	Manager
	Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
	MEHK2012HR47M	RoHS	0.47	±20%	_	0.035	4,100	3,700	1

MEKK2012H type [Thickness:1.0mm max.]									
			Nominal inductance		Self-resonant	DC Resistance	Rated current	※) [mA](max.)	Measuring
	Parts number EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]	
	MEKK2012HR47M	R₀HS	0.47	±20%	-	0.030	4,500	4,200	1

MEKK2016H type			Thickness: 1.0mm	max.					
			Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA] (max.)		
	Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
	MEKK2016HR47M	RoHS	0.47	±20%	-	0.026	5,300	4,700	1
	MEKK2016H1R0M	RoHS	1.0	±20%	-	0.048	4,000	3,500	1
	MEKK2016H2R2M	RoHS	2.2	±20%	-	0.100	2,300	2,300	1

MEKK2520H type			[Thickness: 1.0mm	max.】					
			Nominal inductance		Self-resonant	DC Resistance		※) [mA] (max.)	Measuring
	Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
	MEKK2520H1R0M	R ₀ HS	1	±20%	-	0.039	4,400	3,800	1

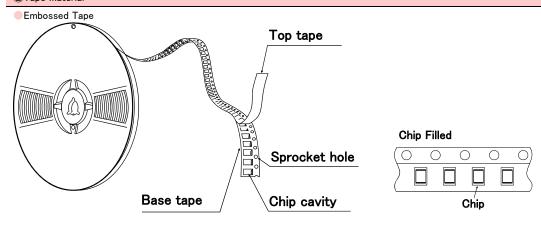
- *X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- * The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)
- XX) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.
- ※) Idc2 Measurement board data Material:FR4

Board dimensions: $100 \times 50 \times 1.6t$ mm

Pattern dimensions: $45 \times 45 \,$ mm (Double side board)

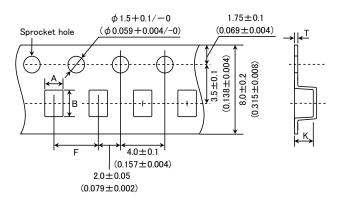
Pattern thickness: 70 μ m

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).


METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES / MCOIL™ ME-H SERIES)

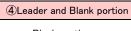
■PACKAGING

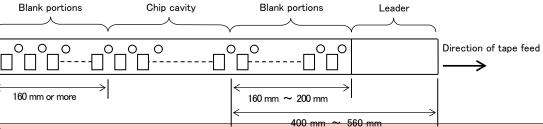
1 Minimum Quantity

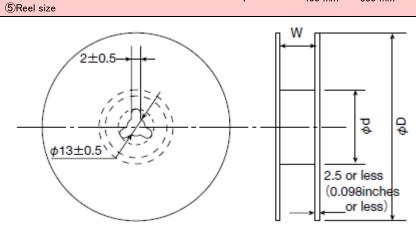

Туре	Standard Quantity [pcs]
туре	Tape & Reel
MEHK2012	3000
MEKK2012	3000
MEKK2016	3000
MEKK2520	3000

2Tape Material

3 Taping dimensions

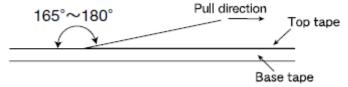

Embossed tape 8mm wide (0.315 inches wide)




Type	Chip	cavity	Insertion pitch	Tape thickness	
i ype	Α	В	F	Т	K
MEHK2012	1.45±0.1	2.25±0.1	4.0±0.1	0.25±0.05	1.1±0.1
WETHENTE	(0.057 ± 0.004)	(0.089 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.043 ± 0.004)
MEKK2012	1.45±0.1	2.25±0.1	4.0±0.1	0.25±0.05	1.1±0.1
MERKZUIZ	(0.057 ± 0.004)	(0.089 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.043 ± 0.004)
MEKK2016	1.9±0.1	2.45±0.1	4.0±0.1	0.25±0.05	1.2±0.1
MERKZUTO	(0.075 ± 0.004)	(0.097 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.047 ± 0.004)
MEKK2520	2.4±0.1	2.9±0.1	4.0±0.1	0.25±0.05	1.1±0.1
WENNZUZU	(0.094 ± 0.004)	(0.114 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.043 ± 0.004)

 $\mathsf{Unit}\!:\!\mathsf{mm}(\mathsf{inch})$

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).



Type	Reel size (Reference values)			
Туре	ϕ D	ϕ d	W	
MEHK2012			_	
MEKK2012	180+0/-3	60+1/-0	10.0±1.5	
MEKK2016	(7.087+0/-0.118) (2.36+0.039/0)	(2.36+0.039/0)	(0.394 ± 0.059)	
MEKK2520				
		11.5	/: I)	

Unit:mm(inch)

6Top Tape Strength

The top The top tape requires a peel-off force of 0.1 to 1.0N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES ∕ MCOIL™ ME-H SERIES)

■RELIABILITY DATA

1. Operating Tempe	rature Range			
Specified Value	ME series			
	ME-H series	40 1 123 0		
Test Methods and Remarks	Including self-generated heat			
0.00 T				
2. Storage Tempera				
Specified Value	ME series	-40~+85°C		
-	ME-H series			
Test Methods and Remarks	0 to 40°C for the product with taping.			
3. Rated current				
5. Nated Current	ME series			
Specified Value	ME-H series	Within the specified tolerance		
	ME-H series			
4. Inductance				
	ME series			
Specified Value	ME-H series	Within the specified tolerance		
Test Methods and		L 294A or equivalent)		
Remarks				
5. DC Resistance				
5. DC Resistance	NE .			
Specified Value	ME series	Within the specified tolerance		
Test Methods and	ME-H series Measuring equipment : DC ohmmeter (HIOKI 3227 or equivalent)			
Remarks				
6 C-14				
6. Self resonance fr	<u> </u>			
Specified Value	ME series	_		
	ME-H series			
7 Tamana	un at a viatio			
7. Temperature cha				
Specified Value	ME series	Inductance change : Within ±15%		
	ME-H series	1000 14000		
Test Methods and Remarks	Measurement of inductance shall be taken at With reference to inductance value at +20°C	t temperature range within −40°C~+125°C.		
Romans	man reference to inductance value at +200	S., Shango rate shall be calculated.		
8. Resistance to fle	xure of substrate			
	ME series			
Specified Value	ME-H series	No damage		
		Let board by the reflow. As illustrated below, apply force in the direction of the arrow indicating		
	until deflection of the test board reaches to 2 mm.			
	Test board size : 100 × 40 × 1.0	10		
Total Made	Test board material : Glass epoxy-r	resin R230		
Test Methods and Remarks	Solder cream thickness : 0.12 mm	$\bigvee \mathcal{V}$		
		Board		
		R5 Test Sample		
		45±2mm 45±2mm		

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Insulation resista	nce : between wires		
0 :5 17/1	ME series		
Specified Value	ME-H series	_	
10. Insulation resist	ance : between wire and over-coating		
Specified Value	ME series		
	ME-H series		
44 14011			
11. Withstanding vol	tage : between wire and over-coating		
Specified Value	ME series	_	
	ME-H series		
12. Adhesion of terr	ninal electrode		
Specified Value	ME series	No abnormality.	
	ME-H series	·	
Test Methods and	The test samples shall be soldered to the test Applied force : 10N to X and	•	
Remarks	Applied force : 10N to X and Duration : 5s.	it directions.	
rtomarito	Solder cream thickness : 0.12mm.		
13. Resistance to vi	bration		
	ME series	Inductance change : Within ±10%	
Specified Value	ME-H series	No significant abnormality in appearance.	
	The test samples shall be soldered to the test	st board by the reflow.	
	Then it shall be submitted to below test conditions.		
	Frequency Range 10~55Hz		
Test Methods and		exceed acceleration 196m/s²)	
Remarks	Sweeping Method 10Hz to 55Hz to	o 10Hz for 1min.	
	X		
	Time Y Z	For 2 hours on ach X, Y, and Z axis.	
		he standard condition after the test, followed by the measurement within 48hrs.	
14. Solderability			
Specified Value	ME series	At least 90% of surface of terminal electrode is covered by new solder.	
opcomed value	ME-H series	At least 50 70 of surface of terminal electrode is covered by flew solder.	
		then immersed in molten solder as shown in below table.	
Test Methods and	Flux : Methanol solution containing rosin 25%.	¬	
Remarks	Solder Temperature 245±5°C Time 5±0.5 sec.	_	
	※Immersion depth : All sides of mounting ter	I rminal shall be immersed.	
15. Resistance to se	oldering heat		
0 :5 !!!	ME series	Inductance change : Within ±10%	
Specified Value	ME-H series	No significant abnormality in appearance.	
Test Methods and Remarks	The test sample shall be exposed to reflow over Test board material : Glass epoxy-resing Test board thickness : 1.0mm	ven at 230°C for 40 seconds, with peak temperature at 260 \pm 0 $/$ \pm 5°C for 5 seconds, 2 times	

Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

16. Thermal shock				
	ME series		Inductance chan	ge : Within ±10%
Specified Value	ME-H series			pnormality in appearance.
	The test samples s	shall be soldered to	the test board by the refl	ow. The test samples shall be placed at specified temperature for specifie
	*			The temperature cycle shall be repeated 100 cycles.
	Conditions of 1 cycle		cycle	
Test Methods and	Step Temperature (°C)		Duration (min)	
Remarks	1	-40±3	30±3	
	2 Roo	m temperature +85±2	Within 3 30±3	
	-	n temperature	Within 3	
	Recovery : At leas	t 2hrs of recovery ι	inder the standard condit	ion after the test, followed by the measurement within 48hrs.
17. Damp heat				
	ME series		Inductance chan	ge : Within ±10%
Specified Value	ME-H series			pnormality in appearance.
		shall he soldered to	the test board by the ref	low
	=			pecified temperature and humidity as shown in below table.
Test Methods and	Temperature	60±2°C		
Remarks	Humidity	90∼95%RH		
	Time	500+24/-0 h		
	Recovery : At leas	t 2hrs of recovery ι	ınder the standard condit	ion after the test, followed by the measurement within 48hrs.
18. Loading under d	amp heat			
Specified Value	ME series		Inductance chan	ge: Within ±10%
opcomed value	ME-H series		No significant ab	pnormality in appearance.
	The test samples	shall be soldered to	the test board by the ref	low.
	•	· ·	thermostatic oven set	at specified temperature and humidity and applied the rated current
Test Methods and	continuously as shown in below table. Temperature 60±2°C			
Remarks	Humidity 90~95%RH			
	Applied current	Rated current		
	Time	500+24/-0 h	our	
	Recovery : At least 2hrs of recovery under		ınder the standard condit	ion after the test, followed by the measurement within 48hrs.
19. Low temperatur	e life test			
0 :5 17/1	ME series		Inductance chan	ge : Within ±10%
Specified Value	ME-H series		No significant ab	onormality in appearance.
	The test samples s	shall be soldered to t	he test board by the refle	ow. After that, the test samples shall be placed at test conditions as show
Test Methods and	in below table.			
Remarks	Temperature	-40±2°C		
	Time	500+24/-0 h		
	Recovery : At leas	t 2hrs of recovery t	inder the standard condit	ion after the test, followed by the measurement within 48hrs.
20. High temperatur	e life test		1	
Specified Value	ME series		Inductance chan	ge: Within ±10%
opcomou value	ME-H series		No significant ab	pnormality in appearance.
	The test samples shall be soldered to the test		the test board by the refle	ow. After that, the test samples shall be placed at test conditions as show
Test Methods and	in below table.	105 : 205		
Remarks	Temperature	125±2°C 500+24/-0 h	0115	
	Time Recovery : At leas			ion after the test, followed by the measurement within 48hrs.
	. NOOOVERY . At leas	c zins or recovery t	the standard confult	and area, the test, renormed by the medistrement within 40115.
01 1				
21. Loading at high	-			
21. Loading at high Specified Value	temperature life tes ME series ME-H series			

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

22. Standard condition				
	ME series Standard test condition: Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidit			
Specified Value	ME-H series	When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of $20\pm2^{\circ}C$ of temperature, $65\pm5\%$ relative humidity. Inductance is in accordance with our measured value.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOILTM ME SERIES / MCOILTM ME-H SERIES)

PRECAUTIONS

1. Circuit Design

Operating environment

Precautions

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

2. PCB Design Precautions

♦Land pattern design

1. Please refer to a recommended land pattern.

Technical considerations

◆Land pattern design Surface Mounting

Mounting and soldering conditions should be checked beforehand.

· Applicable soldering process to this products is reflow soldering only.

3. Considerations for automatic placement

Precautions

Adjustment of mounting machine

- 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards.
- 2. Mounting and soldering conditions should be checked beforehand.

l echnical considerations

Adjustment of mounting machine

1. When installing products, care should be taken not to apply distortion stress as it may deform the products.

4. Soldering

Precautions

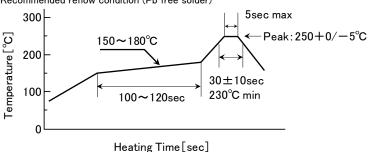
◆Reflow soldering

1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.

2. The product shall be used reflow soldering only.

3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering.

♦Lead free soldering


1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.

◆Reflow soldering

1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.

Recommended reflow condition (Pb free solder)

Technical considerations

5. Cleaning

Precautions

♦Cleaning conditions

1. Washing by supersonic waves shall be avoided.

Technical considerations

◆Cleaning conditions

1. If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage condition	cions
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.
For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL MULTILAYER CHIP POWER INDUCTORS (MCOIL™ MC SERIES)

REFLOW

PARTS NUMBER

* Operating Temp.: -40~+125°C(Including self-generated heat)

△=Blank space

①Series name

Code	Series name
MC	Metal base multilayer chip power inductor

②Thickness

E THIONHOOD	
Code	Thickness[mm]
EK	0.50 max
EE	0.55 max
FK	0.60 max
FE	0.65 max
HK	0.80 max
KK	1.0 max

5 Nominal inductance

Code (example)	Nominal inductance[μ H]
R24	0.24
R47	0.47
1R0	1.0

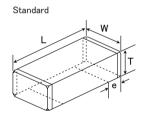
※R=Decimal point

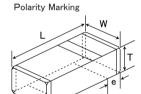
6 Inductance tolerance

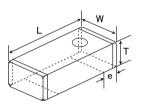
Code	Inductance tolerance
М	±20%

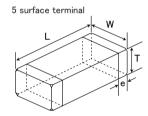
3Dimensions (L × W)

Type(inch)	Dimensions (L×W) [mm]
1005(0402)	1.0 × 0.5
1210(0504)	1.25 x 1.05
1608 (0603)	1.6 × 0.8
2012 (0805)	2.0 × 1.25
2016(0806)	2.0 × 1.6
	1005(0402) 1210(0504) 1608 (0603) 2012 (0805)


Special code


<u> </u>	
Code	Special code
$\triangle \triangle \triangle \triangle$	Standard
\triangle N \triangle \triangle	
$HN \triangle \triangle$	Polarity Marking
$KN\Delta\Delta$	
$G\Delta\Delta\Delta$	5 surface terminal
JG△B	o surface terminal


4 Packaging


- I ackaging	
Code	Packaging
T	Taping

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Type	1	w	Т		Standard qu	antity[pcs]
Туре	L	VV	•	е	Paper tape	Embossed tape
MCEE1005	1.0±0.2	0.5±0.2	0.55 max	0.25±0.15	10000	
(0402)	(0.039 ± 0.008)	(0.020 ± 0.008)	(0.022 max)	(0.010 ± 0.006)	10000	
MCEK1210	1.25±0.1	1.05±0.1	0.50 max	0.30±0.2	5000	_
(0504)	(0.049 ± 0.004)	(0.041 ± 0.004)	(0.020 max)	(0.012 ± 0.008)	3000	_
MCFK1608	1.6±0.2	0.8±0.2	0.60 max	0.3±0.2	4000	
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.024 max)	(0.012 ± 0.008)	4000	_
MCFE1608	1.6±0.2	0.8±0.2	0.65 max	0.3±0.2	4000	
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.026 max)	(0.012 ± 0.008)	4000	_
MCHK1608	1.6±0.2	0.8±0.2	0.80 max	0.4±0.2	4000	_
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.031 max)	(0.016 ± 0.008)	4000	_
MCKK1608	1.6±0.2	0.8±0.2	1.0 max	0.3±0.2		2000
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.039 max)	(0.012 ± 0.008)	_	3000
MCHK2012	2.0±0.2	1.25±0.2	0.80 max	0.5 ± 0.3	4000	
(0805)	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.031 max)	(0.02 ± 0.012)	4000	_
MCKK2012	2.0±0.2	1.25±0.2	1.0 max	0.5±0.3		2000
(0805)	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.039 max)	(0.02 ± 0.012)	_	3000
MCFE2016	2.0±0.2	1.6±0.2	0.65 max	0.5±0.3	4000	
(0806)	(0.079 ± 0.008)	(0.063 ± 0.008)	(0.026 max)	(0.02 ± 0.012)	4000	_

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

●MC1005	●MC1005								
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	DC Resistance [mΩ]		Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
		[μ11]		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIdx.)
MCEE1005TR10MHN	RoHS	0.10	±20%	50	41	2.00	2.00	1	0.55
MCEE1005TR22MHN	RoHS	0.22	±20%	80	65	1.60	1.60	1	0.55
MCEE1005TR47MHN	RoHS	0.47	±20%	140	114	1.20	1.20	1	0.55
MCFF1005T1R0MHN	RoHS	1.0	+20%	300	244	1.00	0.80	1	0.55

MC1210

Parts number	EHS	EHS	EHS	EHS	EHS	EHS	Nominal inductance [μ H]	Inductance tolerance	DC Res [m		Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
		[μπ]		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIax.)					
MCEK1210TR47MHN	R₀HS	0.47	±20%	82	70	2.30	1.60	1	0.50					
MCEK1210T1R0MHN	RoHS	1.0	±20%	179	157	1.50	1.10	1	0.50					
MCEK1210T1R5MHN	R₀HS	1.5	±20%	240	200	1.20	0.90	1	0.50					

MC1608

Parts number	Parts number EHS Nominal inductanc $[\mu H]$		Inductance tolerance			Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
		LATI		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIux.)
MCFK1608TR24M	RoHS	0.24	±20%	50	40	2.30	2.10	1	0.60
MCFK1608TR47M	RoHS	0.47	±20%	85	69	1.90	1.60	1	0.60
MCFK1608T1R0M	RoHS	1.0	±20%	224	182	1.50	0.90	1	0.60
MCFE1608TR24MG	RoHS	0.24	±20%	100	75	2.60	1.50	1	0.65
MCFE1608TR47MG	RoHS	0.47	±20%	150	114	2.00	1.20	1	0.65
MCFE1608T1R0MG	R₀HS	1.0	±20%	340	270	1.40	0.80	1	0.65
MCHK1608TR24MKN	R₀HS	0.24	±20%	24	20	4.30	3.70	1	0.80
MCHK1608TR47MKN	R₀HS	0.47	±20%	43	38	3.30	2.70	1	0.80
MCHK1608TR56MKN	R₀HS	0.56	±20%	55	45	2.70	2.60	1	0.80
MCHK1608T1R0MKN	R₀HS	1.0	±20%	110	89	2.20	1.60	1	0.80
MCHK1608T1R5MKN	R₀HS	1.5	±20%	200	160	1.70	1.30	1	0.80
MCHK1608T2R2MKN	R₀HS	2.2	±20%	292	237	1.50	1.20	1	0.80
MCKK1608TR24M N	R₀HS	0.24	±20%	38	35	2.80	2.60	1	1.00
MCKK1608TR47M N	RoHS	0.47	±20%	55	44	2.40	2.00	1	1.00
MCKK1608T1R0M N	RoHS	1.0	±20%	123	100	2.00	1.30	1	1.00

MC2012

Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance		DC Resistance [mΩ]		Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
		[μπ]		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIax.)
MCHK2012TR24M	RoHS	0.24	±20%	24	19	4.32	3.60	1	0.80
MCHK2012TR47M	RoHS	0.47	±20%	36	30	3.21	3.15	1	0.80
MCHK2012T1R0M	RoHS	1.0	±20%	111	90	2.26	1.47	1	0.80
MCKK2012TR24M	RoHS	0.24	±20%	25	20	6.20	4.00	1	1.00
MCKK2012TR47M	RoHS	0.47	±20%	39	32	4.50	3.10	1	1.00
MCKK2012T1R0M	RoHS	1.0	±20%	90	73	3.60	2.10	1	1.00

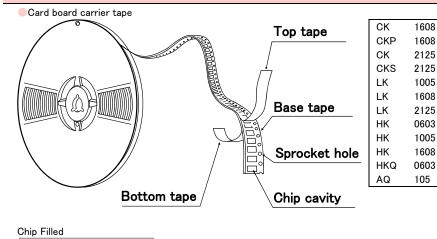
MC2016

● MIOZO10									
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	DC Res		Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness
		272.13		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	E
MCFE2016TR47MJG B	RoHS	0.47	±20%	45	40	4.0	3.20	1	0.65
MCFE2016TR68MJG B	R₀HS	0.68	±20%	60	50	3.0	2.50	1	0.65
MCFE2016T1R0MJG B	RoHS	1.0	±20%	70	60	2.8	2.30	1	0.65

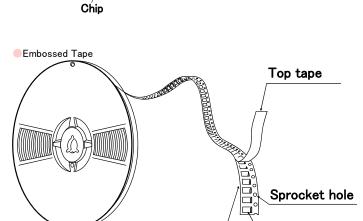
% Idc1 is the DC value at which the initial L value is decreased within 30% by the application of DC bias. (at 20°C) % Idc2 is the DC value at which the temperature of element is increased within 40°C by the application of DC bias. (at 20°C)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type) Metal Multilayer Chip Power Inductors (MCOILTM MC series)


PACKAGING

①Minimum Quantity


Tape & Reel Packaging	g		
т.	Thickness	Standard Qu	uantity [pcs]
Type	mm(inch)	Paper Tape	Embossed Tape
CK 1608 (0603)	0.8 (0.031)	4000	_
OK 0105 (0005)	0.85 (0.033)	4000	_
CK 2125 (0805)	1.25 (0.049)	_	2000
01(00405 (0005)	0.85 (0.033)	4000	_
CKS2125 (0805)	1.25 (0.049)	_	2000
CKP1608 (0603)	0.95 max (0.037 max)	4000	_
CKP2012 (0805)	1.0 max (0.039 max)	_	3000
CKP2016 (0806)	1.0 max (0.039 max)	_	3000
	0.8 max (0.031 max)	_	3000
CKP2520 (1008)	1.0 max (0.039 max)	_	3000
	1.2 max (0.047 max)	_	2000
LK 1005 (0402)	0.5 (0.020)	10000	_
LK 1608 (0603)	0.8 (0.031)	4000	_
LK 010E (000E)	0.85 (0.033)	4000	_
LK 2125 (0805)	1.25 (0.049)	_	2000
HK 0603 (0201)	0.3 (0.012)	15000	_
HK 1005 (0402)	0.5 (0.020)	10000	_
HK 1608 (0603)	0.8 (0.031)	4000	_
HK 2125 (0805)	0.85 (0.033)	_	4000
HK 2120 (0800)	1.0 (0.039)	_	3000
HKQ0603S (0201)	0.3 (0.012)	15000	_
HKQ0603U (0201)	0.3 (0.012)	15000	_
AQ 105 (0402)	0.5 (0.020)	10000	_
BK 0603 (0201)	0.3 (0.012)	15000	_
BK 1005 (0402)	0.5 (0.020)	10000	_
BKH0603 (0201)	0.3 (0.012)	15000	_
BKH1005 (0402)	0.5 (0.020)	10000	_
BK 1608 (0603)	0.8 (0.031)	4000	_
BK 2125 (0805)	0.85 (0.033)	4000	_
BIX 2120 (0000)	1.25 (0.049)	_	2000
BK 2010 (0804)	0.45 (0.018)	4000	_
BK 3216 (1206)	0.8 (0.031)	_	4000
BKP0603 (0201)	0.3 (0.012)	15000	_
BKP1005 (0402)	0.5 (0.020)	10000	_
BKP1608 (0603)	0.8 (0.031)	4000	_
BKP2125 (0805)	0.85 (0.033)	4000	_
MCF0605 (0202)	0.3 (0.012)	15000	_
MCF0806 (0302)	0.4 (0.016)	_	10000
MCF1210 (0504)	0.55 (0.022)	_	5000
MCF2010 (0804)	0.45 (0.018)	_	4000
MCEE1005 (0402)	0.55 max (0.022 max)	10000	_
MCEK1210 (0504)	0.5 max (0.020 max)	5000	_
MCFK1608 (0603)	0.6 max (0.024 max)	4000	_
MCFE1608 (0603)	0.65 max (0.026 max)	4000	_
MCHK1608 (0603)	0.8 max (0.031 max)	4000	_
MCKK1608 (0603)	1.0 max (0.039 max)	-	3000
MCHK2012 (0806)	0.8 max (0.031 max)	4000	_
MCKK2012 (0805)	1.0 max (0.039 max)	_	3000
MCFE2016 (0806)	0.65 max (0.026 max)	4000	_

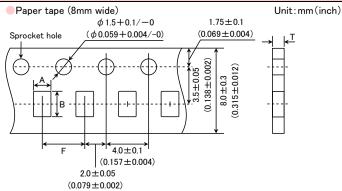
[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

②Taping material


BK	0603
BK	1005
BK	1608
BK	2125
BK	2010
BKP	0603
BKP	1005
BKP	1608
BKP	2125
BKH	0603
BKH	1005
MCF	0605
MC	1005
MC	1210
MC	1608
MC	2012
MC	2016

Base tape

CK	2125	
CKS	2125	
CKP	2012	
CKP	2016	
CKP	2520	
LK	2125	
HK	2125	


BK	2125	
BK	3216	
MCF	0806	
MCF	1210	
MCF	2010	
MC	1608	
MC	2012	

Chip cavity

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

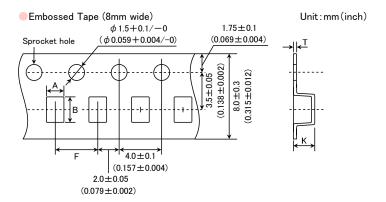
3Taping Dimensions

CK, CKS, CKP, LK, HK, HKQ, AQ, BK, BKP, BKH series

T	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness
Туре	Inickness	Α	В	F	Т
HK 0603 (0201) HKQ0603S (0201) HKQ0603U (0201) BK 0603 (0201) BKH0603 (0201) BKP0603 (0201)	0.3 (0.012)	0.40 (0.016)	0.70 (0.028)	2.0±0.05 (0.079±0.002)	0.45max (0.018max)
LK 1005 (0402) HK 1005 (0402) BK 1005 (0402) BKH1005 (0402) BKP1005 (0402)	0.5 (0.020)	0.65 (0.026)	1.15 (0.045)	2.0±0.05 (0.079±0.002)	0.8max (0.031max)
CK 1608 (0603) LK 1608 (0603) HK 1608 (0603) BK 1608 (0603) BKP1608 (0603)	0.8 (0.031)	1.0 (0.039)	1.8 (0.071)	4.0±0.1 (0.157±0.004)	1.1max (0.043max)
CKP1608 (0603)	0.95 max (0.037max)				
BK 2010 (0804)	0.45 (0.018)	1.2 (0.047)	2.17 (0.085)	4.0±0.1 (0.157±0.004)	0.8max (0.031max)
CK 2125 (0805) CKS2125 (0805) LK 2125 (0805) BK 2125 (0805) BKP2125 (0805)	0.85 (0.033)	1.5 (0.059)	2.3 (0.091)	4.0±0.1 (0.157±0.004)	1.1max (0.043max)
AQ 105 (0402)	0.5 (0.020)	0.75 (0.030)	1.15 (0.045)	2.0±0.05 (0.079±0.002)	0.8max (0.031max)

MC series F type

Туре	Thickness	Chip cavity		Insertion Pitch	Tape Thickness
Type	THICKHESS	Α	В	F	Т
MCF0605 (0202)	0.3	0.62	0.77	2.0±0.05	0.45max
MICF0003 (0202)	(0.012)	(0.024)	(0.030)	(0.079 ± 0.002)	(0.018max)
					Unit: mm(inch)


MCOIL[™] MC series

т	This law are	Chip o	cavity	Insertion Pitch	Tape Thickness
Type	Thickness	Α	В	F	Т
MOFF100F (0400)	0.55 max	0.8	1.3	2.0±0.05	0.64max
MCEE1005 (0402)	(0.021 max)	(0.031)	(0.051)	(0.079 ± 0.002)	(0.025max)
MOEK1010 (0E04)	0.5 max	1.3	1.55	4.0±0.1	0.64max
MCEK1210 (0504)	(0.020 max)	(0.051)	(0.061)	(0.157 ± 0.004)	(0.025max)
MOEK1600 (0602)	0.6 max	1.1	1.9	4.0±0.1	0.72max
MCFK1608 (0603)	(0.024 max)	(0.043)	(0.075)	(0.157 ± 0.004)	(0.028max)
110551000 (0000)	0.65 max	1.1	1.9	4.0±0.1	0.72max
MCFE1608 (0603)	(0.026 max)	(0.043)	(0.075)	(0.157 ± 0.004)	(0.028max)
MOLUK1000 (0000)	0.8 max	1.2	2.0	4.0±0.1	0.9max
MCHK1608 (0603)	(0.031 max)	(0.047)	(0.079)	(0.157 ± 0.004)	(0.035max)
MOLIKA010 (000E)	0.8 max	1.65	2.4	4.0±0.1	0.9max
MCHK2012 (0805)	(0.031 max)	(0.065)	(0.094)	(0.157 ± 0.004)	(0.035 max)
MOFF0016 (0006)	0.65 max	1.95	2.3	4.0±0.1	0.72max
MCFE2016 (0806)	(0.026 max)	(0.077)	(0.091)	(0.157 ± 0.004)	(0.028max)

Unit : mm(inch)

Unit: mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

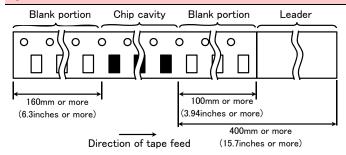
CK, CKS, CKP, LK, HK, BK series

T	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness	
Туре	Inickness	Α	В	F	K	Т
HK 2125 (0805)	0.85 (0.033)				1.5max (0.059 max)	
HK 2125 (0805)	1.0 (0.039)	1.5 (0.059)	2.3	4.0±0.1	2.0 max (0.079 max)	0.3max
CK 2125 (0805) CKS2125 (0805) LK 2125 (0805) BK 2125 (0805)	1.25 (0.049)	(0.000)	(0.091)	(0.157±0.004)	2.0 max (0.079 max)	(0.012 max)
BK 3216 (1206)	0.8 (0.031)	1.9 (0.075)	3.5 (0.138)	4.0±0.1 (0.157±0.004)	1.4 max (0.055 max)	0.3 max (0.012 max)
CKP2012 (0805)	1.0 max (0.039 max)	1.55 (0.061)	2.3 (0.091)	4.0±0.1 (0.157±0.004)	1.3 max (0.051 max)	0.3 max (0.012 max)
CKP2016 (0806)	1.0 max (0.039 max)	1.8 (0.071)	2.2 (0.087)	4.0±0.1 (0.157±0.004)	1.3 max (0.051 max)	0.25 max (0.01 max)
	0.8 max (0.031 max)				1.4 max (0.055 max)	
CKP2520 (1008)	1.0 max (0.039 max)	2.3 (0.091)	2.8 (0.110)	4.0±0.1 (0.157±0.004)	1.4 max (0.055 max)	0.3 max (0.012 max)
	1.2 max (0.047 max)				1.7 max (0.067 max)	

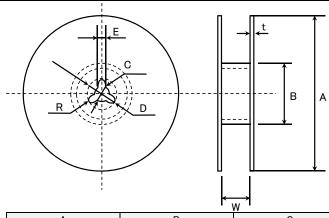
単位:mm(inch) MC series F type

ino concor typo						
+	This large	Chip cavity		Insertion Pitch	Tape Th	ickness
Туре	Thickness	Α	В	F	K	Т
MCF0806 (0302)	0.4	0.75	0.95	2.0±0.05	0.55 max	0.3 max
	(0.016)	(0.030)	(0.037)	(0.079 ± 0.002)	(0.022 max)	(0.012 max)
MCF1210 (0504)	0.55	1.15	1.40	4.0±0.1	0.65 max	0.3 max
	(0.022)	(0.045)	(0.055)	(0.157 ± 0.004)	(0.026 max)	(0.012 max)
MOE0010 (0004)	0.45	1.1	2.3	4.0±0.1	0.85 max	0.3 max
MCF2010 (0804)	(0.018)	(0.043)	(0.091)	(0.157 ± 0.004)	(0.033 max)	(0.012 max)

MCOIL[™] MC series


T TI: 1		Chip cavity		Insertion Pitch	Tape Th	ickness
туре	Type Thickness	Α	В	F	K	Т
MCKK1608 (0603)	1.0 max	1.1	1.95	4.0±0.1	1.5 max	0.3 max
	(0.039 max)	(0.043)	(0.077)	(0.157±0.004)	(0.059 max)	(0.012 max)
MCKK2012 (0805)	1.0 max	1.55	2.35	4.0±0.1	1.45 max	0.3 max
	(0.039 max)	(0.061)	(0.093)	(0.157±0.004)	(0.057 max)	(0.012 max)

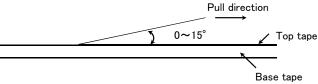
Unit : mm(inch)


Unit: mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4LEADER AND BLANK PORTION

⑤Reel Size


Α	В	C	D	E	R
ϕ 178 ± 2.0	ϕ 50 or more	ϕ 13.0 \pm 0.2	ϕ 21.0±0.8	2.0±0.5	1.0

	t	W
4mm width tape	1.5max.	5±1.0
8mm width tape	2.5max.	10±1.5

(Unit : mm)

6Top tape strength

The top tape requires a peel-off force of 0.1 to 0.7N (*) in the direction of the arrow as illustrated below. *) MCOIL TM MC series is 0.1 to 1.0N.

Multilayer chip inductors

Multilayer chip inductors for high frequency, Multilayer chip bead inductors

Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOIL™ MC series)

RELIABILITY DATA

1. Operating Temp	BK series	
	BKH series	
	BKP series	-55~+125°C(BKP0603: -55~+85°C)
	MCF series	-40~+85°C
	CK series	10 1000
	CKS series	
Specified Value	CKP series	-40~+85°C
Specifica Value	LK series	
	HK0603, HK1005	_55~+125°C
	HK1608, HK2125	-40~+85°C
	HKQ0603	40 1000
	AQ105	
	MCOIL [™] MC series	-40~+125°C (Including self-generated heat)
	MCOIL MO series	-40.9 + 123 C\Including sell generated heat/
2. Storage Tempe	rature Range	
Otorage Temper	BK series	
	BKH series	
	BKP series	-55~+125°C(BKP0603: -55~+85°C)
	MCF series	-40~+85°C
Specified Value	CK series	40 1000
	CKS series	
	CKP series	-40~+85°C
Specified Value	LK series	
	HK0603, HK1005	_55~+125°C
	HK1608, HK2125	-40~+85°C
	HKQ0603	
	AQ105	
	MCOIL™ MC series	-40~+85°C
	WOOLE WO SCIES	1 40 1 00 0
3. Rated Current		
	BK series	
	BKH series	The temperature of the element is increased within 20°C.
	BKP series	The temperature of the element is increased within 40°C
	MCF series	Refer to each specification.
	CK series	
	CKS series	The temperature of the element is increased within 20°C.
	CKP series	The temperature of the element is increased within 40°C
Specified Value	LK series	The decreasing-rate of inductance value is within 5 %
	HK0603, HK1005	
	HK1608, HK2125	The decreasing-rate of inductance value is within 5 %, or the temperature of the element
	HKQ0603	increased within 20°C
	AQ105	Indicated main 20 0
	·	Idc1: The decreasing-rate of inductance value is within 30 %
	MCOIL [™] MC series	Idc2: The temperature of the element is increased within 40°C
	1	1402. The competatore of the element is increased within 40 O

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

•	(or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
quency : 100±1 ipment : 4991A : 16193A	IMHz (or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
quency : 100±1 ipment : 4991A : 16193A	IMHz (or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
quency : 100±1 ipment : 4991A : 16193A	(or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
quency : 100±1 ipment : 4991A : 16193A	(or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
ipment : 4991A(: 16193A	(or its equivalent) A(or its equivalent), 16197A(or its equivalent)	
: 16193A	A(or its equivalent), 16197A(or its equivalent)	
B) series, BKP(except 0	O603) series	
	ouddy series	
quency : 100±1	1MHz	
Measuring equipment : 4291A(or its equivalent), 4195A(or its equivalent)		
Measuring jig : 16192A(or its equivalent), HW: 16193A(or its equivalent)		
quency : 100±1	1MHz, 1GHz±1MHz	
ipment : 4991A	(or its equivalent)	
: 16193A	A(or its equivalent), 16197A(or its equivalent)	
quency : 100±1	1MHz	
	(or its equivalent)	
	ipment : 4991A : 16193/	

5. Inductance		
	CK series	
	CKS series	
	CKP series	
	LK series	
Specified Value	HK0603, HK1005	Refer to each specification.
	HK1608, HK2125	
	HKQ0603	
	AQ105	
	MCOIL [™] MC series	
	CK, CKS, LK series	
	Measuring frequency :	Refer to each specification.
	Measuring equipment /jig :	1608,2125⇒4294A+16092A(or its equivalent)
		1005⇒4291A+16193A(or its equivalent)
	Measuring current :	$047\sim4.7\mu\text{H}$ ⇒1mArms 、 $5.6\sim33\mu\text{H}$ ⇒0.1mArms
	CKP、MCOIL™ MC series	
	·	1MHz
	Measuring equipment :	4285A(or its equivalent)
Test Methods and	HK0603、HK1005、AQ series	
Remarks		100MHz
		HK0603⇒ E4991A+16197A(or its equivalent), AQ105⇒4291A+16197A(or its equivalent)
	ı	HK1005⇒ 4291A+16193A(or its equivalent)
	HK1608、HK2125 series	
	-	~100nH⇒100MHz 、120nH~⇒50MHz
	Measuring equipment /jig :	4291A+16092A(or its equivalent)
	HKQ series	
		500MHz
	Measuring equipment /jig :	E4991A+16197A(or its equivalent)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Q		
Specified Value	LK series HK0603, HK1005 HK1608, HK2125 HKQ0603 AQ105	Refer to each specification.
	Measuring equipment /jig : 1608,212 Measuring current : 047~4.7 HK0603、HK1005、AQ series	each specification. 25⇒4294A+16092A(or its equivalent)、1005⇒4291A+16193A(or its equivalent) 2
Test Methods and Remarks		as E4991A+16197A(or its equivalent),AQ105⇒4291A+16197A(or its equivalent) ⇒4291A+16193A(or its equivalent)
		nH⇒100MHz 、120nH∼⇒50MHz +16092A(or its equivalent)
	HKQ series Measuring frequency : 500MH Measuring equipment /jig : E4991/	Iz A+16197A (or its equivalent)
7. DC Resistance		
	BK series BKH series BKP series MCF series CK series	
CKS series Specified Value CKP series		Refer to each specification.

	BK series	
	BKH series	
	BKP series	
	MCF series	
	CK series	
	CKS series	
Specified Value	CKP series	Refer to each specification.
	LK series	
	HK0603, HK1005	
	HK1608, HK2125	
	HKQ0603	
	AQ105	
	MCOIL [™] MC series	
Test Methods and	Measuring equipment: IWATSU VOAC7512, HIOKI RM3545 (or its equivalent)	
Remarks	ivieasuring equipment: IWA130 VOAC/3	12, FILORI MINOJAO (OF ILS EQUIVAIETIL)

8. Self Resonance F	requency(SRF)		
	CK series		Defends and Section
	CKS series		Refer to each specification.
	LK series		
	HK0603, HK1005		
	HK1608, HK2125		Refer to each specification.
	HKQ0603		
	AQ105		
	LK, CK series :		
	Measuring equipment :	4195A (or	its equivalent)
Test Methods and	d Measuring jig : 16092A(d		or its equivalent)
Remarks			
	HK、HKQ、AQ series:		
	Measuring equipment :	8719C(or	its equivalent)

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Resistance to Fle	exure of Substrate
	BK series
	BKH series
	BKP series
	MCF series
	CK series
	CKS series
Specified Value	CKP series No mechanical damage.
	LK series
	HK0603, HK1005
	HK1608, HK2125
	HKQ0603
	AQ105
	MCOIL™ MC series
	Warp : 2mm (BK series, BKP, BKH1005, CK, CKS, CKP, LK, HK, HKQ0603S, HKQ0603U, AQ series, MCF1210, MC
	series)
	: 1mm(BKH0603, MCF series without 1210 size,) Testing board : glass epoxy-resin substrate
	Thickness : 0.8mm
Test Methods and Remarks	Board Warp Deviation ± 1
10. Solderability	
	DV sovies

10. Solderability			
	BK series		
	BKH series		
	BKP series		
	MCF series		
	CK series		
	CKS series		
Specified Value	CKP series		At least 90% of terminal electrode is covered by new solder.
	LK series		
	HK0603, HK1005		
	HK1608, HK2125		
	HKQ0603		
	AQ105		
	MCOIL [™] MC series		
Test Methods and	Solder temperature	: 230±5°C (JI	S Z 3282 H60A or H63A)
Remarks	Solder temperature	: 245±3°C (Sr	n/3.0Ag/0.5Cu)
Nomarks	Duration	:4±1 sec.	

11. Resistance to Soldering			
	BK series	Appearance: No significant abnormality	
	BKH series	Impedance change: Within ±30%	
	BKP series	Impedance change. Within ±30%	
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%	
	CK series	Appearance: No significant abnormality Inductance change: R10~4R7⇒Within ±10%、6R8~100⇒Within ±15%	
	CKS series	Appearance: No significant abnormality Inductance change: Within ±20%	
Specified Value	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%	
	LK series	Appearance: No significant abnormality Inductance change: 1005⇒Within ±15% 1608,2125⇒ 47N∼4R7: Within ±10% 5R6∼330: Within ±15%	
	HK0603, HK1005		
	HK1608, HK2125	Appearance: No significant abnormality	
	HKQ0603	Inductance change: Within ±5%	
	AQ105		
	MCOIL [™] MC series	Appearance: No significant abnormality Inductance change: Within ±10%	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Solder temperature : 260±5°C

Duration : 10±0.5 sec.

Test Methods and Remarks | Preheating temperature | 150 to 180°C

Preheating time | 3 min.

Flux | Immersion into methanol solution with colophony for 3 to 5 sec.

Recovery | 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1)

12. Thermal Shock	(
	BK series	Appearance: No significant abnormality
	BKH series	Impedance change: Within ±30%
	BKP series	Impedance change. Within ± 30%
	MCF series	Appearance: No significant abnormality
		Impedance change: Within ±20%
	CK series	Appearance: No significant abnormality
	CKS series	Inductance change: Within ±20%
	CKP series	Appearance: No significant abnormality
Specified Value		Inductance change: Within ±30%
	LK series	Appearance: No significant abnormality
		Inductance change: Within ±10% Q change: Within ±30%
	HK0603, HK1005	
	HK1608, HK2125	Appearance: No significant abnormality
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%
	AQ105	
	MCOIL [™] MC series	Appearance: No significant abnormality
		Inductance change: Within ±10%

BK、BKP(0603 を除く)、BKH、HK0603、HK1005、HKQ、AQ series

Conditions for 1 cycle

Step	temperature (°C)	time (min.)
1	-55 + 0/ - 3	30±3
2	Room temperature	2~3
3	+125 +3/-0	30±3
4	Room temperature	2~3

Number of cycles: 5

Recovery: 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1)

BKP0603 series

Conditions for 1 cycle

Test Methods and Remarks

Step	temperature (°C)	time (min.)
1	-55 +0/-3	30±3
2	Room temperature	2~3
3	+85 +3/-0	30±3
4	Room temperature	2~3

Number of cycles: 5

Recovery: 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1)

MCF, CK, CKS, CKP , LK, HK1608, HK2125, MCOIL $^{\text{TM}}$ MC * series

Conditions for 1 cycle

Step	temperature (°C)	time (min.)		
1	-40 +0/-3	30±3		
2	Room temperature	2~3		
3	+85 +3/-0	30±3		
4	Room temperature 2~			

Number of cycles: 5(* MCOIL™ MC series: 100)

Recovery: 2 to 3 hrs of recovery under the standard condition after the test.(See Note 1)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	BK series	A No. 1 Co. 1 Co. 1
	BKH series	Appearance: No significant abnormality
	BKP series	Impedance change: Within ±30%
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%
	CK series	Appearance: No significant abnormality
	CKS series	Inductance change: Within ±20%
Specified Value	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%
specified value	LK series	Appearance: No significant abnormality Inductance change: 1005,1608⇒Within ±10% 2125⇒Within ±20% Q change: Within ±30%
	HK0603, HK1005	
	HK1608, HK2125	Appearance: No significant abnormality
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%
	AQ105]
	MCOIL [™] MC series	Appearance: No significant abnormality Inductance change: Within ±10%
est Methods and Remarks	BK, BKP, BKH, LK, CK, CKS, CKP, MCF series Temperature : 40±2°C Humidity : 90 to 95%RH Duration : 500 +24/-0 hrs Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) HK, HKQ, AQ, MCOIL TM MC series Temperature : 60±2°C Humidity : 90 to 95%RH Duration : 500 +24/-0 hrs	

14. Loading under D	Damp Heat	
	BK series	
	BKH series	Appearance: No significant abnormality
	BKP series	Impedance change: Within ±30%
	CK series	Appearance: No significant abnormality
	CKS series	Inductance change: Within ±20%
	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005⇒Within ±10% 1608⇒0.047~12.0 μH: Within ±10% 2125⇒Within ±20% Q change: Within ±30%
	HK0603, HK1005	
	HK1608, HK2125	Appearance: No significant abnormality
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%
	AQ105	
	MCOIL [™] MC series	Appearance: No significant abnormality Inductance change: Within ±10%
Test Methods and Remarks	BK, BKP, BKH, LK, CK, CKS, CKP so Temperature : 40±2°C Humidity : 90 to 95%RH Applied current : Rated current Duration : 500 +24/-0 hrs Recovery : 2 to 3 hrs of rec HK, HKQ, AQ, MCOIL TM MC* series Temperature : 60±2°C	eries Tovery under the standard condition after the removal from test chamber.(See Note 1)
	Humidity : 90 to 95%RH Applied current : Rated current (* Duration : 500 +24/-0 hrs	MCOIL™ MC series ; Idc2max) overy under the standard condition after the removal from test chamber.(See Note 1)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Loading at High	Temperature	
	BK series	
	BKH series	Appearance: No significant abnormality
	BKP series	Impedance change: Within ±30%
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%
	CK series	Appearance: No significant abnormality
	CKS series	Inductance change: Within ±20%
	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005⇒Within ±10% 1608⇒0.047∼12.0 μH: Within ±10% 15.0∼33.0 μH: Within ±15% 2125⇒Within ±20% Q change: Within ±30%
	HK0603, HK1005	
	HK1608, HK2125	Appearance: No significant abnormality
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%
	AQ105	
	MCOIL [™] MC series※	Appearance: No significant abnormality Inductance change: Within ±10%
BK, BKP (except 0603) *, BKH, HK0603, HK1005 *, HKQ, AQ series Temperature : 125±2°C Applied current: Rated current (* BKP series and HK1005 series apply the rated current of 125°C.) Duration : 500 +24/-0 hrs Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See BKP0603, MCF, CK, CKS, CKP, LK, HK1608, HK2125, MCOIL TM MC * * series Temperature : 85±2°C Applied current: Rated current(** MCOIL TM MC series; Idc2max) Duration : 500 +24/-0 hrs Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See		

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

"standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

■PRECAUTIONS

1. Circuit Design

Precautions

- ◆ Verification of operating environment, electrical rating and performance
 - 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.
 - 2. When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurous acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environmental conditions
- ◆Operating Current(Verification of Rated current)
 - 1. The operating current including inrush current for inductors must always be lower than their rated values.
 - 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
- ◆Temperature rise

Temperature rise of power choke coil depends on the installation condition in end products.

Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design

Precautions

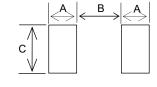
◆Pattern configurations (Design of Land-patterns)

When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.
- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)

After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress.

◆Pattern configurations (Design of Land-patterns)

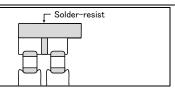

(2) Examples of good and bad solder application

The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts. Examples of improper pattern designs are also shown.

(1) Recommended land dimensions for a typical chip inductor land patterns for PCBs

(Unit:mm)

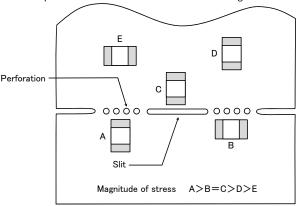
				,		
Туре	1005	1210	1608 (Except MCHK)	1608 (MCHK)	2012	2016
Α	0.4	0.45	0.45	0.65	0.5	0.7
В	0.5	0.6	1.0	0.6	1.2	0.8
С	0.7	1.15	1.0	1.0	1.45	1.8


Technical considerations

Item	Not recommended	Recommended
Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist
Component placement close to the chassis	Chassis Solder (for grounding) Electrode pattern	Solder-resist
Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist -

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Horizontal component placement

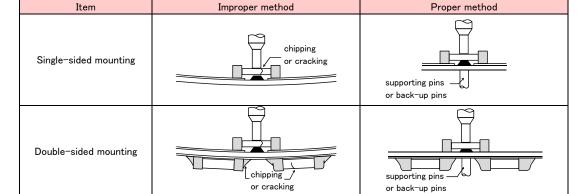


- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - 1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.

Item	Not recommended	Recommended		
Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.		

2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout.

An example below should be counted for better design.



3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

3. Considerations for automatic placement

Precautions

- Adjustment of mounting machine
- 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
- 2. The maintenance and inspection of the mounter should be conducted periodically.
- ◆Adjustment of mounting machine
 - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle:
 - (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board.
 - (2) The pick-up pressure should be adjusted between 1 and 3N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:

Technical considerations

2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.

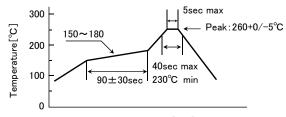
This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Soldering

- Reflow soldering
 - · Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.
 - · The product shall be used reflow soldering only.
 - · Please do not add any stress to a product until it returns in normal temperature after reflow soldering.

Lead free soldering Precautions

- When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
- ◆The conditions for Reworking with soldering irons
 - •Put the soldering iron on the land-pattern and don't touch it to the inductor directly.


Soldering iron's temperature below 350 degC, Duration 3 seconds or less

◆Reflow soldering

· If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.

Recommended reflow condition (Pb free solder)

Technical considerations

Heating Time [sec]

The allowable number of reflow soldering is 3 times.

5. Cleaning

Precautions

Cleaning conditions

Washing by supersonic waves shall be avoided.

Technical considerations

Cleaning conditions

· If washed by supersonic waves, the products might be broken.

6. Resin coating and mold

Precautions

- 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.
- 2. Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance.
- 3. When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may lead to damage in inductors.
- 4. In prior to use, please make the reliability evaluation with the product mounted in your application set.

7. Handling

- ◆Breakaway PC boards (splitting along perforations)
 - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
 - 2. Board separation should not be done manually, but by using the appropriate devices.
- General handling precautions
 - · Always wear static control bands to protect against ESD.
- Precautions
- · Keep the inductors away from all magnets and magnetic objects.
- Use non-magnetic tweezers when handling inductors. · Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.
- Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes.
- Keep inductors away from items that generate magnetic fields such as speakers or coils.

Be careful not to subject the inductors to excessive mechanical shocks.

- (1) If inductors are dropped on the floor or a hard surface they should not be used.
- (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

8. Storage conditions ◆Storage To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Precautions Ambient temperature: 30°C or below Humidity: 70% RH or below The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery. •Inductor should be kept where no chlorine or sulfur exists in the air. **♦**Storage Technical If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of considerations terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

REFLOW

■PARTS NUMBER

*Operating Temp.:-40~+125°C (Including self-generated heat)

△=Blank space

①Series name

Code	Series name		
MD	Metal base coil specification		
-	·		

②Dimensions(H)

②Dimensions (H)				
Code	Dimensions (H) [mm]			
JE	0.95			
KK	1.0			
MK	1.2			
PK	1.4			
WK	2.0			

Code

5 Nominal inductance
Code

(example) R47

1R0	1.0					
4R7	4.7					
XR=Decimal point						
6)Inductance tolerance						

Nominal inductance [μ H]

0.47

Inductance tolerance

 $\pm 20\%$

±30%

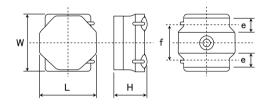
③Dimensions(L×W)

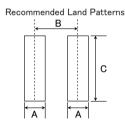
Code	Dimensions (L × W) [mm]
1616	1.6 × 1.6
2020	2.0 × 2.0
3030	3.0×3.0
4040	4.0 × 4.0
5050	4.9 × 4.9

7Special code

М

N


	Code	Special code
F		Ferrite coating
	М	Metal coating


Packaging

4)Packaging	
Code	Packaging
Т	Taping

®Internal code

■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Туре	Α	В	С
1616	0.5	1.10	1.65
2020	0.65	1.35	2.0
3030	0.8	2.2	2.7
4040	1.2	2.8	3.7
5050	1.5	3.6	4.2

Unit:mm

Туре	L	W	Н	е	f	Standard quantity [pcs] Taping
MDKK1616	1.64±0.1 (0.065±0.004)	1.64±0.1 (0.065±0.004)	1.0 max (0.039 max)	0.40 +0.2/-0.1 (0.016 +0.008/-0.004)	1.0±0.2 (0.039±0.008)	2500
MDJE2020	2.0±0.15 (0.079±0.006)	2.0 ± 0.15 (0.079 ± 0.006)	0.95 max (0.037 max)	0.50±0.2 (0.02±0.008)	1.25±0.2 (0.049±0.008)	2500
MDKK2020	2.0±0.15 (0.079±0.006)	2.0±0.15 (0.079±0.006)	1.0 max (0.039 max)	0.50±0.2 (0.02±0.008)	1.25±0.2 (0.049±0.008)	2500
MDMK2020	2.0±0.15 (0.079±0.006)	2.0±0.15 (0.079±0.006)	1.2 max (0.047 max)	0.50±0.2 (0.02±0.008)	1.25±0.2 (0.049±0.008)	2500
MDKK3030	3.0±0.1 (0.118±0.004)	3.0±0.1 (0.118±0.004)	1.0 max (0.039 max)	0.90±0.2 (0.035±0.008)	1.9±0.2 (0.075±0.008)	2000
MDMK3030	3.0±0.1 (0.118±0.004)	3.0±0.1 (0.118±0.004)	1.2 max (0.047 max)	0.90±0.2 (0.035±0.008)	1.9±0.2 (0.075±0.008)	2000
MDJE4040	4.0±0.2 (0.157±0.008)	4.0±0.2 (0.157±0.008)	0.95 max (0.037 max)	1.1±0.2 (0.043±0.008)	2.5±0.2 (0.098±0.008)	1000
MDMK4040	4.0±0.2 (0.157±0.008)	4.0±0.2 (0.157±0.008)	1.2 max (0.047 max)	1.1±0.2 (0.043±0.008)	2.5±0.2 (0.098±0.008)	1000
MDWK4040	4.0±0.2 (0.157±0.008)	4.0±0.2 (0.157±0.008)	2.0 max (0.079 max)	1.1±0.2 (0.043±0.008)	2.5±0.2 (0.098±0.008)	700
MDPK5050	4.9±0.2 (0.193±0.008)	4.9±0.2 (0.193±0.008)	1.4 max (0.055 max)	1.20±0.2 (0.047±0.008)	3.3±0.2 (0.130±0.008)	1000

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

MDKK1616 type	[Thickness: 1.0mm	max.】

		_	_				Datad aurran	t ※)[mA]			
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	DC Resis	tance[Ω]	Saturation current: Idc1		Temperature ri	Measuring frequency[MHz]		
		[[[]		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equentoy [ivii iz]	
MDKK1616TR47MM	RoHS	0.47	±20%	0.095	0.080	3,300	4,100	1,500	1,780	1	
MDKK1616T1R0MM	RoHS	1.0	±20%	0.140	0.120	2,200	2,750	1,200	1,490	1	
MDKK1616T1R5MM	RoHS	1.5	±20%	0.185	0.160	1,750	2,200	1,100	1,330	1	
MDKK1616T2R2MM	RoHS	2.2	±20%	0.250	0.215	1,500	1,800	950	1,110	1	
MDKK1616T3R3MM	RoHS	3.3	±20%	0.515	0.450	1,150	1,450	650	730	1	
MDKK1616T4R7MM	RoHS	4.7	±20%	0.640	0.550	950	1,200	550	630	1	
MDKK1616T6R8MM	RoHS	6.8	±20%	0.820	0.710	630	880	520	600	1	
MDKK1616T100MM	RoHS	10	±20%	1.120	0.970	550	800	450	500	1	
MDKK1616T150MM	RoHS	15	±20%	1.800	1.600	460	640	400	440	1	

Parts number EHS Nominal inducta	Manipal industria	ctance		tance[Ω]		Rated curren	t ※)[mA]		Measuring	
Parts number	EHS	[μ H]	Inductance tolerance	DC Resis	rance[32]	Saturation of	current: Idc1	Temperature rise current: Idc2		frequency[MHz]
		2,2.13		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equality [iiii iz]
MDJE2020T1R0MM	RoHS	1.0	±20%	0.121	0.106	3,100	3,800	1,550	1,800	1
MDJE2020T2R2MM	RoHS	2.2	±20%	0.266	0.230	1,550	1,900	1,050	1,200	1
MDJE2020T3R3MM	RoHS	3.3	±20%	0.340	0.290	1,350	1,600	950	1,100	1
MDJE2020T4R7MM	RoHS	4.7	±20%	0.475	0.410	1,200	1,550	850	950	1
MDJE2020T6R8MM	RoHS	6.8	±20%	0.630	0.550	800	1,100	750	850	1
MDJE2020T100MM	RoHS	10	±20%	1.040	0.910	700	900	550	600	1

	Doube number FUS Nominal inductance	Manada at Santa at an an		DC Resis	101		Rated curren	t ※)[mA]		Measuring
Parts number	EHS	Nominal Inductance [μH]	Inductance tolerance	DC Resis	tance [32]	Saturation current: Idc1		Temperature rise current: Idc2		frequency[MHz]
		[[[]]		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equency [wii iz]
MDKK2020TR47MM	RoHS	0.47	±20%	0.046	0.040	3,500	4,150	2,200	2,500	1
MDKK2020TR68MM	RoHS	0.68	±20%	0.060	0.052	3,200	3,650	2,000	2,100	1
MDKK2020T1R0MM	RoHS	1.0	±20%	0.085	0.074	2,900	3,400	1,700	1,900	1
MDKK2020T1R5MM	RoHS	1.5	±20%	0.133	0.115	1,900	2,250	1,350	1,500	1
MDKK2020T2R2MM	RoHS	2.2	±20%	0.165	0.139	1,650	1,950	1,200	1,350	1
MDKK2020T3R3MM	RoHS	3.3	±20%	0.275	0.240	1,300	1,550	940	1,050	1
MDKK2020T4R7MM	RoHS	4.7	±20%	0.435	0.375	1,050	1,250	750	850	1
MDKK2020T100MM	RoHS	10	±20%	0.690	0.600	750	900	630	680	1
MDKK2020T150MM	RoHS	15	±20%	1.180	1.020	550	750	480	550	1

	- maintenance in a main									
		Nominal inductance		DC Resist	tongo[0]			t ※)[mA]		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	DO Resis	rance[32]	Saturation of	current: Idc1	Temperature ri	se current: Idc2	Measuring frequency[MHz]
		LATI		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equency [min2]
MDMK2020TR47MM	RoHS	0.47	±20%	0.046	0.040	4,200	4,800	2,300	2,450	1
MDMK2020TR68MM	RoHS	0.68	±20%	0.058	0.050	3,500	4,100	2,000	2,200	1
MDMK2020T1R0MM	RoHS	1.0	±20%	0.064	0.056	2,550	2,900	1,900	2,050	1
MDMK2020T1R5MM	RoHS	1.5	±20%	0.086	0.075	2,000	2,300	1,650	1,750	1
MDMK2020T2R2MM	RoHS	2.2	±20%	0.109	0.095	1,750	2,000	1,450	1,550	1
MDMK2020T3R3MM	RoHS	3.3	±20%	0.178	0.155	1,350	1,550	1,150	1,200	1
MDMK2020T4R7MM	RoHS	4.7	±20%	0.242	0.210	1,150	1,300	950	1,050	1

- MDKK3030 type		I mickness. Lumin	max.							
		Nominal inductance		DC Pagin	tance[Ω]		Rated curren	nt ※)[mA]		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	DO Resis	rance[32]	Saturation (current: Idc1	Temperature rise current: Idc2		frequency[MHz]
		£ /× 113		Max.	Тур.	Max.	Тур.	Max.	Тур.	in oquonoy [iiii iz]
MDKK3030TR47MM	RoHS	0.47	±20%	0.039	0.033	5,400	6,500	3,900	4,500	1
MDKK3030T1R0MM	RoHS	1.0	±20%	0.086	0.074	4,400	5,200	2,400	2,800	1
MDKK3030T1R5MM	RoHS	1.5	±20%	0.100	0.087	3,000	3,500	2,100	2,400	1
MDKK3030T2R2MM	RoHS	2.2	±20%	0.144	0.125	2,500	3,000	1,900	2,200	1
MDKK3030T3R3MM	RoHS	3.3	±20%	0.248	0.215	2,000	2,400	1,350	1,500	1
MDKK3030T4R7MM	RoHS	4.7	±20%	0.345	0.300	1,700	2,000	1,150	1,300	1
MDKK3030T6R8MM	RoHS	6.8	±20%	0.437	0.380	1,400	1,700	1,000	1,150	1
MDKK3030T100MM	RoHS	10	±20%	0.575	0.500	1,100	1,300	850	1,000	1

MDMK3030 type [Thickness: 1.2mm max.]

- MDMK3030 type	MDMR3030 type [Trickness: 1.2mm max.]										
		Nominal inductance		DC Pagin	tance[Ω]		Rated curren	t ※)[mA]		Measuring	
Parts number	EHS	[μ H]	Inductance tolerance	DO Resis	tance[32]	Saturation of	current: Idc1	Temperature rise current: Idc2		frequency[MHz]	
		2,2.13		Max.	Тур.	Max.	Тур.	Max.	Тур.	oquooy [iz]	
MDMK3030TR30MM	RoHS	0.30	±20%	0.020	0.017	7,600	9,200	5,500	6,400	1	
MDMK3030TR33MM	RoHS	0.33	±20%	0.020	0.017	6,400	8,700	5,500	6,400	1	
MDMK3030TR47MM	RoHS	0.47	±20%	0.027	0.023	6,300	7,500	4,700	5,500	1	
MDMK3030T1R0MM	RoHS	1.0	±20%	0.050	0.043	4,300	5,100	3,300	3,900	1	
MDMK3030T1R5MM	RoHS	1.5	±20%	0.074	0.064	3,400	4,100	2,500	3,000	1	
MDMK3030T2R2MM	RoHS	2.2	±20%	0.112	0.097	2,800	3,600	2,100	2,400	1	
MDMK3030T3R3MM	RoHS	3.3	±20%	0.167	0.145	2,100	2,700	1,650	1,900	1	
MDMK3030T4R7MM	RoHS	4.7	±20%	0.263	0.228	1,800	2,300	1,350	1,550	1	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for General Electronic Equipment

PARTS NUMBER

MDJE4040 type	[Thickness: 0.95mm	max.

		Nominal inductance		DC Basis	tance[Ω]		Rated curren	t ※)[mA]		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	DC Resis	rance[32]	Saturation (current: Idc1	Temperature ri	se current: Idc2	frequency[MHz]
		L M I I		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equency [imit2]
MDJE4040TR47MM	RoHS	0.47	±20%	0.040	0.035	6,000	7,900	4,000	4,500	1
MDJE4040T1R0MM	RoHS	1.0	±20%	0.069	0.060	4,700	5,700	3,000	3,500	1
MDJE4040T1R5MM	RoHS	1.5	±20%	0.084	0.073	3,000	4,000	2,700	3,100	1
MDJE4040T2R2MM	RoHS	2.2	±20%	0.115	0.100	2,400	3,100	2,400	2,700	1
MDJE4040T3R3MM	RoHS	3.3	±20%	0.200	0.175	2,000	2,600	1,800	2,000	1
MDJE4040T4R7MM	RoHS	4.7	±20%	0.250	0.220	1,900	2,300	1,600	1,900	1
MDJE4040T6R8MM	RoHS	6.8	±20%	0.370	0.320	1,500	1,800	1,300	1,500	1
MDJE4040T100MM	RoHS	10	±20%	0.510	0.440	1,400	1,700	1,100	1,300	1

Parta numbar		Nominal inductance		DC Resistance[Ω]				Measuring		
Parts number	EHS	[μ H]	Inductance tolerance	DO Resis	rance[32]	Saturation current: Idc1		Temperature rise current: Idc2		frequency[kHz]
		[[[11]]		Max.	Тур.	Max.	Тур.	Max.	Тур.	irequericy[Ki12]
MDMK4040TR47MF	RoHS	0.47	±20%	0.029	0.025	7,500	10,000	4,600	5,400	100
MDMK4040T1R0MF	RoHS	1.0	±20%	0.047	0.041	5,200	7,500	3,500	4,200	100
MDMK4040T1R2MF	RoHS	1.2	±20%	0.047	0.041	4,200	6,200	3,500	4,200	100
MDMK4040T1R5MF	RoHS	1.5	±20%	0.065	0.056	3,700	5,400	3,300	3,600	100
MDMK4040T2R2MF	RoHS	2.2	±20%	0.092	0.080	3,200	4,500	2,500	2,900	100

MDMK4040 type [Thickness:1.2mm max]

WIDWINTOTO type	MDMIN-10-10 type Trillickiless. 1.2/1/1/1 max.										
		Nominal inductance		DC Posis	tance[Ω]		Rated curren	t ※)[mA]		Measuring	
Parts number	EHS	[μ H]	Inductance tolerance	DO Resis	rance[32]	Saturation of	current: Idc1	Temperature rise current: Idc2		frequency[MHz]	
		LATI		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equency [ivil iz]	
MDMK4040TR68MM	RoHS	0.68	±20%	0.029	0.025	6,700	7,800	5,000	5,700	1	
MDMK4040T1R0MM	RoHS	1.0	±20%	0.036	0.031	5,000	6,200	4,500	5,100	1	
MDMK4040T1R5MM	RoHS	1.5	±20%	0.065	0.056	4,500	5,600	3,200	3,600	1	
MDMK4040T2R2MM	RoHS	2.2	±20%	0.079	0.069	3,800	4,500	2,800	3,200	1	
MDMK4040T3R3MM	RoHS	3.3	±20%	0.130	0.113	3,200	4,000	2,200	2,500	1	
MDMK4040T4R7MM	RoHS	4.7	±20%	0.160	0.140	2,500	3,000	1,900	2,200	1	
MDMK4040T6R8MM	RoHS	6.8	±20%	0.230	0.200	1,900	2,200	1,600	1,800	1	
MDMK4040T100MM	RoHS	10	±20%	0.330	0.280	1,700	2,000	1,400	1,600	1	

MDWK4040 type [Thickness: 2.0mm max.]

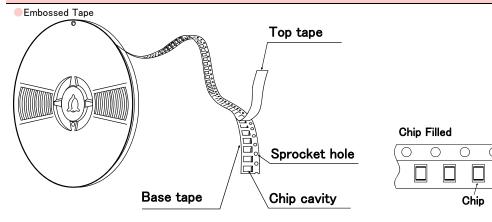
- IIID III (To To typo		L THIORHOUGE . E.OHIIII	max.							
		Nominal inductance		DC Resist	101		Rated curren	t ※)[mA]		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	DC Resis	rance[32]	Saturation of	current: Idc1	Temperature rise current: Idc2		frequency[MHz]
		L M III		Max.	Тур.	Max.	Тур.	Max.	Тур.	in equency [iiii iz]
MDWK4040TR33NM	RoHS	0.33	±30%	0.013	0.011	16,000	21,000	7,800	8,800	1
MDWK4040TR47NM	RoHS	0.47	±30%	0.013	0.011	10,000	15,000	7,800	8,800	1
MDWK4040TR56NM	RoHS	0.56	±30%	0.016	0.014	9,000	13,000	6,500	7,500	1
MDWK4040TR68MM	RoHS	0.68	±20%	0.016	0.014	8,000	12,000	7,300	8,300	1
MDWK4040T1R0MM	RoHS	1.0	±20%	0.027	0.023	7,000	9,400	5,100	5,800	1
MDWK4040T1R5MM	RoHS	1.5	±20%	0.041	0.035	7,000	9,400	4,100	4,700	1
MDWK4040T2R2MM	RoHS	2.2	±20%	0.054	0.047	5,400	7,500	3,500	4,000	1
MDWK4040T3R3MM	RoHS	3.3	±20%	0.075	0.066	3,700	5,200	3,000	3,300	1
MDWK4040T4R7MM	RoHS	4.7	±20%	0.107	0.093	3,500	5,000	2,500	2,800	1
MDWK4040T6R8MM	RoHS	6.8	±20%	0.158	0.138	2,900	4,000	2,000	2,300	1
MDWK4040T100MM	RoHS	10	±20%	0.194	0.169	2,200	3,100	1,600	1,900	1
MDWK4040T220MM	RoHS	22	±20%	0.460	0.400	1,500	2,100	1,200	1,400	1
MDWK4040T330MM	RoHS	33	±20%	0.720	0.625	1,200	1,700	800	1,000	1

MDPK5050 type [Thickness: 1.4mm max.]

Thiokiess: 1.4min max.											
			Nominal inductance		DC Resistance[Ω]		Rated current ※) [mA]				Measuring
	Parts number	EHS	[μ H]	Inductance tolerance			DO Resistance[3:]		Saturation of	current: Idc1	Temperature ris
		[[[]		Max.	Тур.	Max.	Тур.	Max.	Тур.	- oquonoy [IVII IZ]	
	MDPK5050T1R0MM	RoHS	1.0	±20%	0.040	0.034	8,500	10,000	4,300	4,700	1
	MDPK5050T2R2MM	RoHS	2.2	±20%	0.055	0.047	4,100	5,000	3,600	4,200	1
	MDPK5050T3R3MM	RoHS	3.3	±20%	0.086	0.073	3,800	4,500	2,900	3,400	1
	MDPK5050T4R7MM	RoHS	4.7	±20%	0.102	0.088	3,500	4,200	2,500	3,000	1
	MDPK5050T6R8MM	RoHS	6.8	±20%	0.138	0.12	2,700	3,200	2,200	2,500	1
	MDPK5050T100MM	R₀HS	10	+20%	0.225	0.19	2 200	2 600	1 700	2 000	1

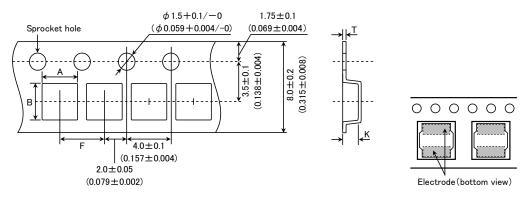
- *) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- $\begin{tabular}{ll} \put(0,0) \put(0,0)$
- XX) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).


METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

■PACKAGING

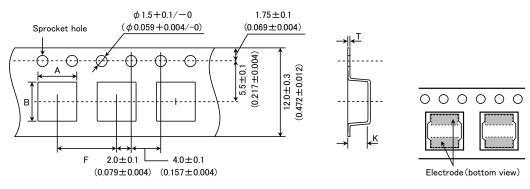
1)Minimum Quantity


Type	Standard Quantity [pcs] Tape & Reel				
туре					
MDKK1616	2500				
MDJE2020					
MDKK2020	2500				
MDMK2020					
MDKK3030	2000				
MDMK3030	2000				
MDJE4040	1000				
MDMK4040	1000				
MDWK4040	700				
MDPK5050	1000				

2Tape Material

3 Taping dimensions

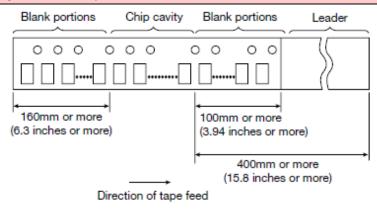
Embossed tape 8mm wide (0.315 inches wide)



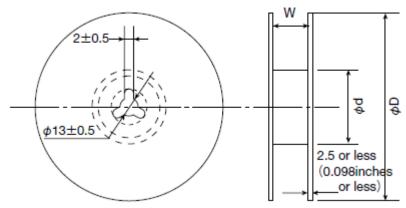
Туре	Chip	cavity	Insertion pitch	Tape thickness		
туре	A B		F	Т	K	
MDKK1616	1.79±0.1	1.79±0.1	4.0±0.1	0.25±0.05	1.1±0.1	
MDVV1010	(0.071 ± 0.004)	(0.071 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.043 ± 0.004)	
MDJE2020	22+01	2.2±0.1	4.0±0.1	0.25±0.05	1.3±0.1	
MDKK2020						
MDMK2020	(0.102 ± 0.004)	(0.102 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.051 ± 0.004)	
MDKK3030	3.2±0.1	3.2±0.1	4.0±0.1	0.3±0.05	1.4±0.1	
MDMK3030	(0.126 ± 0.004)	(0.126 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.055 ± 0.004)	
					11.1. /1.1.	

Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Embossed tape 12mm wide (0.47 inches wide)

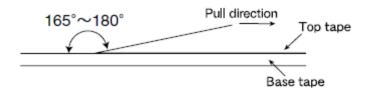
Chip	cavity	Insertion pitch	Tape th	Tape thickness	
Α	В	F	Т	K	
4.3±0.1	4.3±0.1	8.0±0.1	0.3±0.05	1.6±0.1	
(0.169 ± 0.004)	(0.169 ± 0.004)	(0.315 ± 0.004)	(0.012 ± 0.002)	(0.063 ± 0.004)	
4.3±0.1	4.3±0.1	8.0±0.1	0.3±0.05	2.3±0.1	
(0.169 ± 0.004)	(0.169 ± 0.004)	(0.315 ± 0.004)	(0.012 ± 0.002)	(0.091 ± 0.004)	
5.25±0.1	5.25±0.1	8.0±0.1	0.3±0.1	1.6±0.1	
(0.207 ± 0.004)	(0.207 ± 0.004)	(0.315 ± 0.004)	(0.012 ± 0.004)	(0.063 ± 0.004)	
	A 4.3±0.1 (0.169±0.004) 4.3±0.1 (0.169±0.004) 5.25±0.1	$\begin{array}{cccc} 4.3 \pm 0.1 & 4.3 \pm 0.1 \\ (0.169 \pm 0.004) & (0.169 \pm 0.004) \\ 4.3 \pm 0.1 & 4.3 \pm 0.1 \\ (0.169 \pm 0.004) & (0.169 \pm 0.004) \\ 5.25 \pm 0.1 & 5.25 \pm 0.1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	


Unit:mm(inch)

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size


Turna	R	leel size (Reference value	s)
Туре	ΦD	ϕ d	W
MDKK1616			
MDJE2020			
MDKK2020	180±0.5	60±1.0	10.0±1.5
MDMK2020	(7.087 ± 0.019)	(2.36 ± 0.04)	(0.394 ± 0.059)
MDKK3030			
MDMK3030			
MDJE4040			
MDMK4040	180±3.0	60±2.0	14.0±1.5
MDWK4040	(7.087 ± 0.118)	(2.36 ± 0.08)	(0.551 ± 0.059)
MDPK5050			

Unit:mm(inch)

6Top Tape Strength

Top tape strength

Туре	Peel-off strength
MDKK1616	
MDJE2020	
MDKK2020	0.1N~1.0N
MDMK2020	0.1N~1.0N
MDKK3030	
MDMK3030	
MDJE4040	
MDMK4040	0.1N1.2N
MDWK4040	0.1N~1.3N
MDPK5050	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

■RELIABILITY DATA

RELIABILITY DATA			
1. Operating Tempe	erature Range		
Specified Value	MD series	-40~+125°C	
Test Methods and Remarks	Including self-generated heat		
	_		
2. Storage Tempera		T -	
Specified Value	MD series		
Test Methods and Remarks	-5 to 40°C for the product with taping.		
3. Rated current			
Specified Value	MD series	Within the specified tolerance	
4. Inductance			
Specified Value	MD series	Within the specified tolerance	
Test Methods and		1285A or equivalent)	
Remarks	Measuring condition : Please see item li	st.	
5. DC Resistance			
	MD series	Within the constitution of the second	
Specified Value Test Methods and	MD series	Within the specified tolerance	
Remarks	Measuring equipment : DC ohmmeter (H	IOKI 3227 or equivalent)	
6. Self resonance fr	requency		
Specified Value	MD series	_	
	L		
7. Temperature cha	racteristic		
Specified Value	MD series	Inductance change : Within ±10%	
Test Methods and Remarks	Measurement of inductance shall be taken at With reference to inductance value at $\pm 20^\circ$	t temperature range within $-40^{\circ}\text{C}\!\sim\!+125^{\circ}\text{C}$. C., change rate shall be calculated.	
0.0	6.1		
8. Resistance to fle	I	N. I	
Specified Value	MD series	No damage	
Test Methods and Remarks	until deflection of the test board reaches to Test board size : 100 × 40 × 1.0 Test board material : Glass epoxy— Solder cream thickness : 0.10 mm	mm Force Rod 10, 20	
9. Insulation resista	nce : between wires		
Specified Value	MD series	-	
		·	
10. Insulation resist	ance : between wire and core		
Specified Value	MD series	_	
11. Withstanding vo	ltage : between wire and core		
Specified Value	MD series	_	

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Specified Value	MD series		Shall not come off PC board	
	The test samples shall be soldered to the to		st board by the reflow.	
Test Methods and	Applied force : 10N to X and		Y directions.	
Remarks	Duration	: 5s.		
	Solder cream thickness	: 0.10mm.		
13. Resistance to v	ibration			
Specified Value	MD series		Inductance change : Within ±10%	
•			No significant abnormality in appearance.	
	The test samples shall be s	soldered to the tes		
			st board by the reflow.	
	The test samples shall be s		st board by the reflow.	
T . M . I . I	The test samples shall be s	to below test cond 10~55Hz	st board by the reflow.	
Test Methods and Remarks	The test samples shall be so then it shall be submitted frequency Range	to below test cond 10~55Hz	exceed acceleration 196m/s²)	

14. Solderability			
Specified Value	MD series		At least 90% of surface of terminal electrode is covered by new solder.
T . M	The test samples shall be d Flux : Methanol solution cor	• •	then immersed in molten solder as shown in below table.
Test Methods and Solder Temperature 245±5°C			
Remarks	Time	5±1.0 sec.	
	*Immersion depth : All sides of mounting terminal shall be immersed.		

Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

15. Resistance to se	oldering heat	
Specified Value	MD series	Inductance change : Within ±10%
Specified value	MD series	No significant abnormality in appearance.
Test Methods and Remarks The test sample shall be exposed to reflow oven at 230±5°C for 40 seconds, with peak temperature at 260± (Glass epoxy-resin Test board thickness): 1.0mm		ven at 230±5°C for 40 seconds, with peak temperature at 260±5°C for 5 seconds, 2 times.

16. Thermal shock					
Specified Value	MD series			Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.	
				-	he test samples shall be placed at specified temperature for specified emperature cycle shall be repeated 100 cycles.
		Conditions of 1 cycle Temperature (°C) -40±3			
Test Methods and	Step			Duration (min)	
Remarks	1			30±3	
	2	Room temperature		Within 3	
	3	+85±2		30±3	
	4	Room temperature		Within 3	

17. Damp heat			
Specified Value	MD series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.
Test Methods and	The test samples shall be soldered to the test board by the reflow. d The test samples shall be placed in thermostatic oven set at specified temperature ar		•
Remarks	Temperature	60±2°C	
	Humidity	90~95%RH	
	Time	500+24/-0 hour	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Loading under o	lamp heat		
Specified Value	MD series		Inductance change: Within ±10%
			No significant abnormality in appearance.
	The test samples shall be soldered to the test		•
			mostatic oven set at specified temperature and humidity and applied the rated currer
Test Methods and	continuously as show	60±2°C	
Remarks	Temperature	90~95%RH	_
	Humidity Applied current	Rated current	_
	Time	500+24/-0 hour	_
	Time	300 + 24/ - 0 riour	
40.1			
19. Low temperatur	re life test		
Specified Value	MD series		Inductance change : Within ±10%
·			No significant abnormality in appearance.
Test Methods and	1	all be soldered to the te	st board by the reflow. After that, the test samples shall be placed at test conditions as show
Remarks	in below table.		
	Temperature	-40±2°C	
	Time	500+24/-0 hour	
20. High temperatur	ra lifa taat		
20. High temperatu	re me test		
Specified Value	MD series		_
			_
Specified Value			_
Specified Value 21. Loading at high	MD series temperature life test		Inductance change : Within ±10%
Specified Value	MD series		Inductance change : Within ±10% No significant abnormality in appearance.
Specified Value 21. Loading at high	MD series temperature life test MD series	all be soldered to the te	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value	MD series temperature life test MD series The test samples sha		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples sha		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shall		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shabelow table.	all be placed in thermost	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shadelow table. Temperature	all be placed in thermost	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shadelow table. Temperature Applied current	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown Standard test condition:
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown Standard test condition: Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity.

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

PRECAUTIONS

1. Circuit Design

◆Operating environment

Precautions

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

2. PCB Design Precautions All Pland pattern design

1. Please refer to a recommended land pattern.

Technical considerations

Land pattern design
 Surface Mounting

- Mounting and soldering conditions should be checked beforehand.
- · Applicable soldering process to this products is reflow soldering only.

3. Considerations for automatic placement

Precautions

- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards.
 - 2. Mounting and soldering conditions should be checked beforehand.

Technical considerations

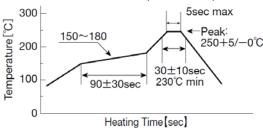
- Adjustment of mounting machine
 - 1. When installing products, care should be taken not to apply distortion stress as it may deform the products.

4. Soldering

◆Reflow soldering

- 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.
- 2. The product shall be used reflow soldering only.
- 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering.

♦Lead free soldering


Precautions

- When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
- ◆Recommended conditions for using a soldering iron (NR10050 Type)
 - · Put the soldering iron on the land-pattern.
 - Soldering iron's temperature Below 350°C
 - Duration 3 seconds or less
- · The soldering iron should not directly touch the inductor.

◆Reflow soldering

- If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.
 - •NR30/40/50/60/80, NRV20/30, NRH24/30, NRS20/40/50/60/80 Type, NR10050 Type, NS101/125 Type Recommended reflow condition (Pb free solder)

Technical considerations

5. Cleaning

Precautions

◆Cleaning conditions

1. Washing by supersonic waves shall be avoided.

Technical considerations

♦Cleaning conditions

1. If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling Precautions

◆Handling

- 1. Keep the product away from all magnets and magnetic objects.
- ◆Breakaway PC boards (splitting along perforations)
- 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board.
- 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆Mechanical considerations
- 1. Please do not give the product any excessive mechanical shocks.
- 2. Please do not add any shock and power to a product in transportation.
- ◆Pick-up pressure
- 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part.
- ◆Packing
- 1. Please avoid accumulation of a packing box as much as possible.
- **♦**Board mounting
- 1. There shall be no pattern or via between terminals at the bottom of product.
- 2. Components which are located in peripheral of product shall not make contact with surface (top, side) of product.

◆Handling

- 1. There is a case that a characteristic varies with magnetic influence.
- ◆Breakaway PC boards (splitting along perforations)
- 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs.
- ◆Mechanical considerations
 - 1. There is a case to be damaged by a mechanical shock.
 - 2. There is a case to be broken by the handling in transportation.
- Technical considerations
- ◆Pick-up pressure
 1. Damage and a characteristic can vary with an excessive shock or stress.
- ◆Packing
 - 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.
- APaard maunting
- 1. If there is pattern or via between terminals at the bottom of product, it may cause characteristics change.
- 2. If components which are located in peripheral of product make contact with surface (top, side) of product, it may cause damage or characteristics change.

Precautions

7. Storage conditions

◆Storage

To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.

- Recommended conditions
 - Ambient temperature : −5~40°C

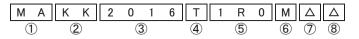
Humidity: Below 70% RH

- The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may
 decrease as time passes.
 - For this reason, product should be used within 6 months from the time of delivery.
 - In case of storage over 6 months, solderability shall be checked before actual usage.

Technical considerations

♦Storage

1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.: -40~+105°C (Including self-generated heat)

①Series name

Code	Series name
MA	Metal Core Wire-wound Chip Power Inductor

②Dimensions (T)

0 1.	•
Code	Dimensions (T) [mm]
KK	1.0
MK	1.2

3Dimensions (L × W)

2016 2016(0906) 2.0 × 1.6	Code	Type (inch)	Dimensions (L×W)[mm]
2010 2010(0800) 2.0 ^ 1.0	2016	2016 (0806)	2.0 × 1.6
2520 2520(1008) 2.5 × 2.0	2520	2520(1008)	2.5 × 2.0

4 Packaging

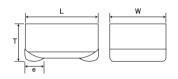
Code	Packaging
Т	Taping

⑤Nominal inductance

△=Blank space

Code (example)	Nominal inductance[μ H]
R47	0.47
1R0	1.0
4R7	4.7

6Inductance tolerance

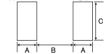

Code	Inductance tolerance
М	±20%

Special code

O-F	
Code	Special code
Δ	Standard

®Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY



Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

•Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С
2016	0.7	0.8	1.8
2520	0.8	1.2	2.0
			Unit:mm

Туре	L	W	Т	е	Standard quantity[pcs] Taping
MAKK2016	2.0±0.1 (0.079±0.004)	1.6±0.1 (0.063±0.004)	1.0 max (0.039 max)	0.5 ± 0.3 (0.020±0.012)	3000
MAKK2520	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.0 max (0.039 max)	0.5±0.3 (0.020±0.012)	3000
MAMK2520	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.2 max (0.047 max)	0.5±0.3 (0.020±0.012)	3000

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for General Electronic Equipment

MAKK2016(0806) type [Thickness:1.0mm max.]								
		Nominal inductance		Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current ※) [mA] (max.)		Measuring
Parts number	EHS Nominal Inductan		Inductance tolerance			Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MAKK2016TR24M	RoHS	0.24	±20%	-	0.037	4,200	3,000	2
MAKK2016TR33M	RoHS	0.33	±20%	-	0.040	3,600	3,200	2
MAKK2016TR47M	RoHS	0.47	±20%	-	0.460	3,200	2,800	2
MAKK2016TR68M	RoHS	0.68	±20%	-	0.065	2,500	2,500	2
MAKK2016T1R0M	RoHS	1.0	±20%	-	0.075	2,200	2,200	2
MAKK2016T1R5M	RoHS	1.5	±20%	-	0.130	1,600	1,650	2
MAKK2016T2R2M	RoHS	2.2	±20%	-	0.160	1,500	1,500	2
MAKK2016T3R3M	RoHS	3.3	±20%	-	0.255	1,150	1,200	2
MAKK2016T4R7M	RoHS	4.7	±20%	-	0.380	1,000	950	2

MAKK2520(1008) type	ness:1.0mm max.】
---------------------	------------------

• III) (I (I (LOLO (1000	/ cypo	L THIOMHOUGE . T.OHIIII	max.					
		Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MAKK2520TR33M	RoHS	0.33	±20%	-	0.038	4,700	3,500	2
MAKK2520TR47M	RoHS	0.47	±20%	-	0.046	3,900	3,200	2
MAKK2520TR68M	RoHS	0.68	±20%	-	0.059	3,700	2,900	2
MAKK2520T1R0M	RoHS	1.0	±20%	-	0.072	2,700	2,500	2
MAKK2520T1R5M	RoHS	1.5	±20%	-	0.125	2,300	1,800	2
MAKK2520T2R2M	RoHS	2.2	±20%	-	0.156	1,900	1,500	2
MAKK2520T3R3M	RoHS	3.3	±20%	-	0.200	1,550	1,300	2
MAKK2520T4R7M	RoHS	4.7	±20%	-	0.300	1,300	1,100	2

MAMK2520(1008) type	【Thickness:1.2mm max.】
---------------------	------------------------

	Manada at S	Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA] (max.)		Manager
Parts number	EHS	[μ H]	Inductance tolerance	frequency	[Ω](max.)	Saturation current	Temperature rise current	Measuring frequency[MHz]
		[[[]		[MHz] (min.)	E 3E 3 (Max.)	Idc1	Idc2	ir equerioy [ivii iz]
MAMK2520TR47M	RoHS	0.47	±20%	-	0.039	4,200	3,400	2
MAMK2520TR68M	RoHS	0.68	±20%	-	0.048	3,200	3,200	2
MAMK2520T1R0M	RoHS	1.0	±20%	-	0.059	3,100	2,700	2
MAMK2520T2R2M	RoHS	2.2	±20%	-	0.110	2,000	1,900	2
MAMK2520T3R3M	RoHS	3.3	±20%	-	0.156	1,800	1,700	2
MAMK2520T4R7M	RoHS	4.7	±20%	-	0.260	1,500	1,300	2

- X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30% (at 20°C)
 X) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)
- * The rated current value is following either Idc1 or Idc2, which is the lower one.

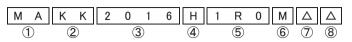
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Nominal inductance [μ H]

0.47

1.0

4.7


METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA-H SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.: -40~+125°C (Including self-generated heat)

* Operating Temp.:-40~+105°C (Including self-generated heat) %1Parts Number reference

Dimensions

(L × W) [mm]

2.0 × 1.6

 2.5×2.0

 $\Delta =$ Blank space

①Ser	ies	name	

Code	Series name
MA	Metal Core Wire-wound Chip Power Inductor

②Dimensions(T)

3Dimensions (L × W)

Code	Dimensions (T) [mm]
KK	1.0
MK	1.2

Type (inch)

2016(0806)

2520(1008)

%R=Decimal point

Nominal inductance

(example) R47

1R0

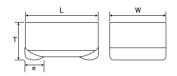
4R7

⑥Inductance tolerance						
Code	Inductance tolerance					
М	±20%					

-

7Special code	
Code	Special code
	Standard

2520 4 Packaging

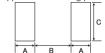

Code

2016

Tr doridging	
Code	Packaging or Special specification
Н	Taping (High characteristics)

8Internal code

■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY



Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

*Applicable soldering process to these products is reflow soldering only.

Type	Α	В	С
2016	0.7	0.8	1.8
2520	0.8	1.2	2.0
			Unit:mm

Туре	L	W	Т	е	Standard quantity[pcs] Taping
MAKK2016H	2.0±0.1 (0.079±0.004)	1.6±0.1 (0.063±0.004)	1.0 max (0.039 max)	0.5 ± 0.3 (0.020±0.012)	3000
MAKK2520H	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.0 max (0.039 max)	0.5±0.3 (0.020±0.012)	3000
MAMK2520H	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.2 max (0.047 max)	0.5±0.3 (0.020±0.012)	3000

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for General Electronic Equipment

MAKK2016H(0806) type [Thickness:1.0mm max.]								
		Nominal inductance		Self-resonant Bo			Rated current ※) [mA](max.)	
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	DC Resistance [Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MAKK2016HR22M	RoHS	0.22	±20%	-	0.026	5,800	4,000	2
MAKK2016HR24M	RoHS	0.24	±20%	-	0.026	5,800	4,000	2
MAKK2016HR33M	RoHS	0.33	±20%	-	0.030	4,700	3,500	2
MAKK2016HR47M	RoHS	0.47	±20%	-	0.036	4,300	3,300	2
MAKK2016HR68M	RoHS	0.68	±20%	-	0.050	3,200	2,700	2
MAKK2016H1R0M	RoHS	1.0	±20%	-	0.070	2,700	2,300	2
MAKK2016H1R5M	RoHS	1.5	+20%	-	0.105	2 100	1 800	2

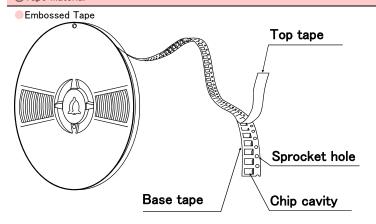
●MAKK2520H(1008) type 【Thickness:1.0mm max.】								
		Nominal inductance		Self-resonant	DC Resistance [Ω] (max.)	Rated current	Rated current ※) [mA] (max.)	
Parts number	EHS	[µ H]	Inductance tolerance	frequency [MHz] (min.)		Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MAKK2520HR22M	RoHS	0.22	±20%	-	0.021	7500	4900	2
MAKK2520HR33M	RoHS	0.33	±20%	-	0.026	6200	4300	2
MAKK2520HR47M	R₀HS	0.47	±20%	-	0.029	5700	4000	2
MAKK2520HR68M	RoHS	0.68	±20%	-	0.043	4300	3400	2
MAKK2520H1R0M	RoHS	1.0	±20%	-	0.053	3800	3000	2
MAKK2520H1R5M	R₀HS	1.5	±20%	-	0.078	3000	2400	2
MAKK2520H2R2M	RoHS	2.2	±20%	-	0.120	2500	1800	2
MAKK2520H100M ※1	R₀HS	10	±20%	-	0.650	1100	750	2

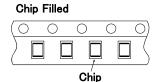
MAMK2520H(100	MAMK2520H(1008) type [Thickness:1.2mm max.]							
		Nominal inductance		Self-resonant	DC Resistance	Rated current	Rated current ※) [mA](max.)	
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MAMK2520HR22M	RoHS	0.22	±20%	-	0.021	7500	5000	2
MAMK2520HR33M	RoHS	0.33	±20%	-	0.023	6600	4400	2
MAMK2520HR47M	RoHS	0.47	±20%	-	0.026	5800	4100	2
MAMK2520HR68M	RoHS	0.68	±20%	1	0.036	5100	3500	2
MAMK2520H1R0M	RoHS	1.0	±20%	ı	0.045	4300	3100	2
MAMK2520H1R5M	RoHS	1.5	±20%	ı	0.065	3300	2600	2
MAMK2520H2R2M	RoHS	2.2	±20%	-	0.090	2800	2200	2

2021

 $[\]ensuremath{\ensuremath{\%}}\xspace$) The rated current value is following either Idc1 or Idc2, which is the lower one.

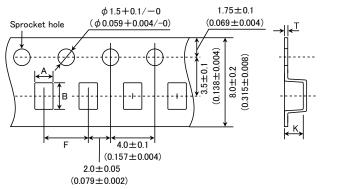
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

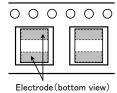

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES / MCOIL™ MA-H SERIES)


PACKAGING

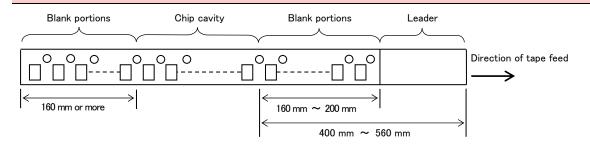
1 Minimum Quantity

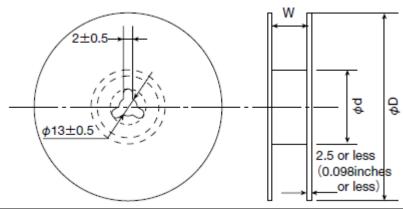
Туре	Standard Quantity [pcs]
	Tape & Reel
MAKK2016	3000
MAKK2520	3000
MAMK2520	3000


2Tape Material



3 Taping dimensions

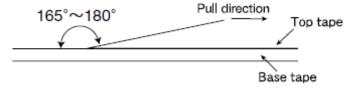

Embossed tape 8mm wide (0.315 inches wide)


Tuna	Chip cavity		Insertion pitch	Tape thickness		
Туре	Α	В	F	T	K	
MAKK2016	1.9±0.1	2.3±0.1	4.0±0.1	0.25±0.05	1.2 max	
WARRZUTO	(0.075 ± 0.004)	(0.091 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.047 max)	
1441/1/0500	2.3±0.1	2.8±0.1	4.0±0.1	0.3±0.05	1.25 max	
MAKK2520	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.049 max)	
MANIZOEGO	2.3±0.1	2.8±0.1	4.0±0.1	0.3±0.05	1.4 max	
MAMK2520	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.055 max)	

QLeader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size



Type	Reel size (Reference values)		
Туре	ϕ D	ϕ d	W
MAKK2016	100+0 / 2	60+1/-0	10.0±1.5
MAKK2520	180+0/-3 (7.087+0/-0.118)	(2.36+0.039/0)	(0.394 ± 0.059)
MAMK2520			
•			

Unit:mm(inch)

6Top Tape Strength

The top The top tape requires a peel-off force of 0.1 to 1.2N in the direction of the arrow as illustrated below.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL $^{\text{TM}}$ MA SERIES / MCOIL $^{\text{TM}}$ MA-H SERIES)

■RELIABILITY DATA

1. Operating Temperature Range					
Consider 11/1	MA series	-40~+105°C			
Specified Value	MA-H series	-40~+125°C			
Test Methods and Remarks	d Including self-generated heat				
0.00 T					
2. Storage Tempera					
Specified Value	MA II assista				
Test Methods and Remarks	MA-H series 0 to 40°C for the product with taping.				
3. Rated current					
0 :5 1)/1	MA series	West of the Control o			
Specified Value	MA-H series	Within the specified tolerance			
4. Inductance					
Specified Value	MA series	Within the specified tolerance			
Specified value	MA-H series	Within the Specified tolerance			
Test Methods and Remarks	ods and Measuring equipment : LCR Meter (HP 4285A or equivalent) Measuring frequency : 2MHz, 1V				
5. DC Resistance					
5. DO Resistance	MA series				
Specified Value		Within the specified tolerance			
Test Methods and Remarks	MA-H series Measuring equipment : DC ohmmeter (HIOKI 3227 or equivalent)				
6. Self resonance fr	requency				
Specified Value	MA series				
Specified value	MA-H series				
7. Temperature cha	racteristic				
Specified Value	MA series	Inductance change : Within ±15%			
opecined value	MA-H series	Inductance change . Within 2.10%			
Test Methods and Remarks					
8. Resistance to fle	vure of substrate				
o. Resistance to ne	MA series				
Specified Value	MA-H series	No damage			
Test Methods and Remarks		resin Force Rod 10 R230 Board			
		R5 Test Sample 45±2mm			

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Insulation resista	nce : between wires		
C:	MA series		
Specified Value MA-H series			
10. Insulation resist	ance : between wire and core		
	MA series		
Specified Value	MA-H series	-	
	l	I	
11. Withstanding vol	Itage : between wire and core		
	MA series		
Specified Value	MA-H series	-	
		<u> </u>	
12. Adhesion of terr	minal electrode		
12. Addiesion of con	MA series		
Specified Value	MA-H series	No abnormality.	
	The test samples shall be soldered to the test	t board by the reflew	
Test Methods and	Applied force : 10N to X and	•	
Remarks	Duration : 5s.		
	Solder cream thickness : 0.12mm.		
13. Resistance to vi	ibration		
Specified Value	MA series	Inductance change : Within ±10%	
Specified value	MA-H series	No significant abnormality in appearance.	
	The test samples shall be soldered to the tes	·	
	Then it shall be submitted to below test cond	ditions.	
	Frequency Range 10~55Hz Total Amplitude 1.5mm (May not	exceed acceleration 196m/s²)	
Test Methods and	Sweeping Method 10Hz to 55Hz to		
Remarks	X		
	Time	For 2 hours on each X, Y, and Z axis.	
	Z		
	Recovery : At least 2hrs of recovery under the	he standard condition after the test, followed by the measurement within 48hrs.	
14. Solderability			
Specified Value	MA series	At least 90% of surface of terminal electrode is covered by new solder.	
•	MA-H series	·	
		then immersed in molten solder as shown in below table.	
Test Methods and	Flux : Methanol solution containing rosin 25%. Solder Temperature 245±5°C		
Remarks	Solder Temperature 245±5°C Time 5±0.5 sec.	_	
	※Immersion depth : All sides of mounting ter	ப minal shall be immersed.	
15. Resistance to se	oldering heat		
	MA series	Inductance change : Within ±10%	
Specified Value	MA-H series	No significant abnormality in appearance.	
		I ven at 230°C for 40 seconds, with peak temperature at 260 \pm 0/ \pm 5°C for 5 seconds, 3 times.	
Test Methods and	Test board material : Glass epoxy-resin		
Remarks	Test board thickness : 1.0mm		
	Recovery : At least 2hrs of recovery under the	he standard condition after the test, followed by the measurement within 48hrs.	

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

16. Thermal shock MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified temperature for specified time by step 1 to step 4 as shown in below table in sequence. The temperature cycle shall be repeated 100 cycles. Conditions of 1 cycle Duration (min) Step Temperature (°C) Test Methods and -40±3 30 ± 3 1 Remarks 2 Room temperature Within 3 3 +85±2 30 ± 3 Room temperature Within 3 Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 17. Damp heat MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table. Test Methods and 60±2°C Temperature Remarks Humidity 90~95%RH 500+24/-0 hour Time Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 18. Loading under damp heat MA series Inductance change : Within $\pm 10\%$ Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity and applied the rated current continuously as shown in below table. Test Methods and Temperature 60±2°C Remarks Humidity 90∼95%RH Applied current Rated current Time 500+24/-0 hour Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 19. Low temperature life test MA series Inductance change : Within $\pm 10\%$ Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown in below table. Test Methods and Remarks Temperature -40±2°C Time 500+24/-0 hour Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 20. High temperature life test MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown Test Methods and in below table 85 ± 2°C Remarks Temperature 500+24/-0 hour Time Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 21. Loading at high temperature life test MA series

Specified Value

MA-H series

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

22. Standard condition			
Specified Value	MA series	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity	
	MA-H series	When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of $20\pm2^{\circ}C$ of temperature, $65\pm5\%$ relative humidity. Inductance is in accordance with our measured value.	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES / MCOIL™ MA-H SERIES)

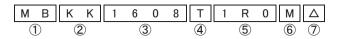
PRECAUTIONS 1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical Precautions equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. 2. PCB Design Land pattern design Precautions 1. Please refer to a recommended land pattern. ◆Land pattern design Technical Surface Mounting Mounting and soldering conditions should be checked beforehand. considerations · Applicable soldering process to this products is reflow soldering only. 3. Considerations for automatic placement Adjustment of mounting machine Precautions 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. Adjustment of mounting machine considerations 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. 4. Soldering ◆Reflow soldering 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. 2. The product shall be used reflow soldering only Precautions 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. ◆Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. Reflow soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) 5sec max 300 - Peak∶260+0/−5°C $\mathsf{Cemperature}[\mathsf{^{\circ}C}]$ 150~180 Technical 200 considerations 40sec max 100 $90 \pm 30 sec$ 230°C min

5. Cleaning Cleaning conditions Precautions 1. Washing by supersonic waves shall be avoided. ◆Cleaning conditions **Technical** considerations 1. If washed by supersonic waves, the products might be broken.

Heating Time [sec]

0

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)


6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage conditions		
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. 	
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.	

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES)

■PARTS NUMBER

* Operating Temp.: -40~+105°C (Including self-generated heat)

△=Blank space

①Series name

Code	Series name	
MB	Metal Wire-Wound chip power inductor	

②Dimensions (T)

Code	Dimensions (T) [mm]
KK	1.0
MK	1.2

3Dimensions (L × W)

Code	Type (inch)	Dimensions (L×W)[mm]
1608	1608(0603)	1.6 × 0.8
2012	2012 (0805)	2.0 × 1.25
2520	2520(1008)	2.5 × 2.0

4 Packaging

Code	Packaging
Т	Taping

(5)Nominal inductance

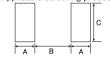
Code (example)	Nominal inductance[μ H]
R24	0.24
1R0	1.0
4R7	4.7

※R=Decimal point

6Inductance tolerance

Code	Inductance tolerance	
M	±20%	
N	±30%	

7Internal code


■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

· Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С
1608	0.55	0.70	1.00
2012	0.60	1.00	1.45
2520	0.60	1.50	2.00

Unit:mm

Туре		W	т		Standard quantity[pcs]		
Type	_	٧٧	'	е	Paper tape	Embossed tape	
MDKK1600	1.6±0.2	0.8±0.2	1.0 max	0.45±0.15		3000	
MBKK1608	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.040 max)	(0.016 ± 0.006)	_		
MBKK2012	2.0±0.2	1.25±0.2	1.0 max	0.5±0.2		3000	
MBKKZUIZ	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.040 max)	(0.020 ± 0.008)			
MBMK2520	2.5±0.2	2.0±0.2	1.2 max	0.5±0.2		2000	
MDMVZ3Z0	(0.098 ± 0.008)	(0.079 ± 0.008)	(0.047 max)	(0.020 ± 0.008)	_	3000	
						Unit:mm(inch)	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for General Electronic Equipment

■PARTS NUMBER

MBKK1608 (0603) type	Thickness: 1.0mm	max.					
		Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	$[\Omega]$ (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MBKK1608TR24N	RoHS	0.24	±30%	-	0.049	1,650	2,300	1.0
MBKK1608TR47N	RoHS	0.47	±30%	-	0.104	1,100	1,400	1.0
MBKK1608TR68N	RoHS	0.68	±30%	-	0.120	950	1,200	1.0
MBKK1608T1R0M	RoHS	1.0	±20%	-	0.150	800	1,150	1.0
MBKK1608T1R5M	RoHS	1.5	±20%	-	0.200	650	1,000	1.0
MBKK1608T2R2M	RoHS	2.2	±20%	-	0.345	520	750	1.0
MBKK1608T3R3M	RoHS	3.3	±20%	-	0.512	450	600	1.0
MBKK1608T4R7M	RoHS	4.7	±20%	-	0.730	370	500	1.0

MBKK2012(0805) type	[Thickness: 1.0mm max.]
---------------------	-------------------------

- INBITITE (CCCC	, ,,,,,,	Timoraroso: r.omini		•		1		•
		Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency	[Ω](max.)	Saturation current	Temperature rise current	frequency[MHz]
		27"		[MHz] (min.)		Idc1	Idc2	
MBKK2012TR24N	RoHS	0.24	±30%	-	0.041	3,000	2,400	1.0
MBKK2012TR47N	RoHS	0.47	±30%	-	0.078	2,000	1,650	1.0
MBKK2012TR68N	RoHS	0.68	±30%	-	0.090	1,800	1,500	1.0
MBKK2012T1R0M	RoHS	1.0	±20%	-	0.106	1,500	1,450	1.0
MBKK2012T1R5M	RoHS	1.5	±20%	-	0.173	1,200	1,100	1.0
MBKK2012T2R2M	RoHS	2.2	±20%	-	0.290	900	850	1.0
MBKK2012T3R3M	RoHS	3.3	±20%	-	0.500	700	650	1.0
MBKK2012T4R7M	RoHS	4.7	±20%	-	0.615	600	600	1.0

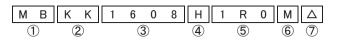
MBMK2520(1008) type	【Thickness:1.2mm max.】
---------------------	------------------------

■ IVIDIVII (2020 (1000	// cypc	THIOMICSS. I.ZIIIII	max.					
	New	Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MBMK2520TR24N	RoHS	0.24	±30%	-	0.026	4,750	3,500	1.0
MBMK2520TR47N	RoHS	0.47	±30%	-	0.042	3,900	2,600	1.0
MBMK2520TR68N	RoHS	0.68	±30%	-	0.058	3,150	2,150	1.0
MBMK2520T1R0M	RoHS	1.0	±20%	-	0.072	2,350	1,850	1.0
MBMK2520T1R5M	RoHS	1.5	±20%	-	0.106	2,050	1,500	1.0
MBMK2520T2R2M	RoHS	2.2	±20%	-	0.159	1,800	1,250	1.0
MBMK2520T3R3M	RoHS	3.3	±20%	-	0.260	1,400	970	1.0
MBMK2520T4R7M	RoHS	4.7	±20%	-	0.380	1,150	800	1.0

^{*}X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

^{*}X) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)

^{*)} The rated current value is following either Idc1 or Idc2, which is the lower one.


[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB-H SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.:-40~+125°C (Including self-generated heat)

 \triangle =Blank space

①Series name

Code	Series name
MB	Metal Wire-Wound chip power inductor

②Dimensions (T)

B B III I B I B I C I I	
Code	Dimensions (T) [mm]
KK	1.0
MK	1.2

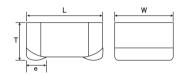
③Dimensions (L×W)

Code	Type (inch)	Dimensions (L×W)[mm]
1608	1608 (0603)	1.6 × 0.8
2520	2520(1008)	2.5 × 2.0

4 Packaging

Code	Packaging
Н	Taping(Special specification)

(5)Nominal inductance


©				
Code (example)	Nominal inductance[μ H]			
R24	0.24			
1R0	1.0			
4R7	4.7			

6Inductance tolerance

Code	Inductance tolerance
М	±20%
N	±30%

7Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

•Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С
1608	0.55	0.70	1.00
2520	0.60	1.50	2.00
			Unit:mm

Type	Type L W T			Standard quantity[pcs]		
• •	L	VV	'	е	Paper tape	Embossed tape
MBKK1608	1.6±0.2 (0.063±0.008)	0.8±0.2 (0.031±0.008)	1.0 max (0.040 max)	0.45±0.15 (0.016±0.006)	-	3000
MBMK2520	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.2 max (0.047 max)	0.5±0.2 (0.020±0.008)	-	3000

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

for General Electronic Equipment

MBKK1608H(0603) type	[Thickness: 1.0mm max.]
----------------------	-------------------------

Newinel industry		Nominal inductance		Self-resonant	DC Resistance	Rated current	Manager	
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	frequency [O](max)		Temperature rise current Idc2	Measuring frequency[MHz]
MBKK1608HR24N	RoHS	0.24	±30%	-	0.049	1,650	2,300	1.0
MBKK1608HR47N	RoHS	0.47	±30%	-	0.104	1,100	1,400	1.0
MBKK1608HR68N	RoHS	0.68	±30%	-	0.120	950	1,200	1.0
MBKK1608H1R0M	RoHS	1.0	±20%	-	0.150	800	1,150	1.0
MBKK1608H1R5M	RoHS	1.5	±20%	-	0.200	650	1,000	1.0
MBKK1608H2R2M	RoHS	2.2	±20%	-	0.345	520	750	1.0
MBKK1608H3R3M	RoHS	3.3	±20%	-	0.512	450	600	1.0
MBKK1608H4R7M	RoHS	4.7	±20%	-	0.730	370	500	1.0

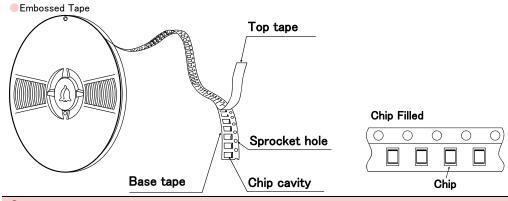
MBMK2520H(1008) type [Thickness:1.2mm max.]

		Nominal inductance		Self-resonant	DC Resistance	Rated current	※) [mA](max.)	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	•	
MBMK2520HR24N	RoHS	0.24	±30%	-	0.026	4,750	3,500	1.0
MBMK2520HR47N	RoHS	0.47	±30%	-	0.042	3,900	2,600	1.0
MBMK2520HR68N	RoHS	0.68	±30%	-	0.058	3,150	2,150	1.0
MBMK2520H1R0M	RoHS	1.0	±20%	-	0.072	2,350	1,850	1.0
MBMK2520H1R5M	RoHS	1.5	±20%	-	0.106	2,050	1,500	1.0
MBMK2520H2R2M	RoHS	2.2	±20%	-	0.159	1,800	1,250	1.0
MBMK2520H3R3M	RoHS	3.3	±20%	-	0.260	1,400	970	1.0
MBMK2520H4R7M	RoHS	4.7	±20%	-	0.380	1,150	800	1.0

^{**}X)The temperature isc current value (ldc2) is the DC current value having temperature increase by 40°C. (at 20°C)

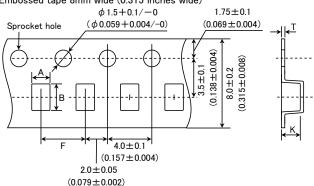
**X)The rated current value is following either Idc1 or Idc2, which is the lower one.

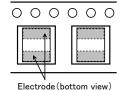
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).


METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES / MCOIL™ MB-H SERIES)

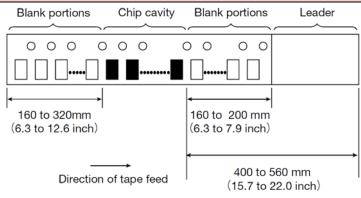
■PACKAGING

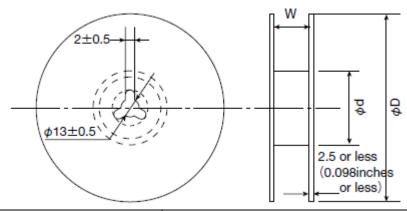
1 Minimum Quantity


Type	Standard Quantity [pcs]
Туре	Tape & Reel
MBKK1608/MBKK1608H	3000
MBKK2012	3000
MBMK2520/MBMK2520H	3000


2Tape Material

3 Taping dimensions

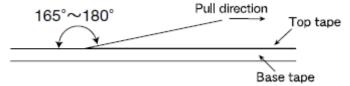

Embossed tape 8mm wide (0.315 inches wide)


Tuna	Chip cavity		Insertion pitch	Tape thickness		
Туре	Α	В	F	Т	K	
MBKK1608 / MBKK1608H	1.1	1.9	4.0±0.1	0.25±0.05	1.2 max	
MRKK1008/ MRKK1008H	(0.043)	(0.075)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.047 max)	
MERCHANA	1.45	2.2	4.0±0.1	0.25±0.05	1.2 max	
MBKK2012	(0.057)	(0.087)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.047 max)	
14D14440500 (14D14405001)	2.3	2.8	4.0±0.1	0.3±0.05	1.45 max	
MBMK2520/MBMK2520H	(0.091)	(0.110)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.057 max)	
					Unit:mm(inch)	

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size



Type	Reel size (Reference values)				
Туре	ϕ D	ϕ d	W		
MBKK1608/MBKK1608H	180+0/-3	60+1/-0	10.0 ± 1.5		
MBKK2012	(7.087+0/-0.118)	(2.36+0.039/0)	10.0±1.5 (0.394±0.059)		
MBMK2520/MBMK2520H	(7.067+0/-0.116)	(2.30+0.039/0)	(0.394±0.059)		

Unit:mm(inch)

6Top Tape Strength

The top The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES ✓ MCOIL™ MB-H SERIES)

Test Methods and

Remarks

Measuring equipment

RELIABILITY DATA 1. Operating Temperature Range -40~+105°C MB series Specified Value -40~+125°C MB-H series Test Methods and Including self-generated heat Remarks 2. Storage Temperature Range MB series -40~+85°C Specified Value MB-H series Test Methods and 0 to 40° C for the product with taping. Remarks 3. Rated current MB series Specified Value Within the specified tolerance MB-H series 4. Inductance MB series Specified Value Within the specified tolerance MB-H series Test Methods and : LCR Meter (HP 4285A or equivalent) Measuring equipment Remarks Measuring frequency : 1MHz, 1V 5. DC Resistance MB series Specified Value Within the specified tolerance MB-H series

6. Self resonance fr	equency	
Specified Value	MB series	
	MB-H series	

: DC ohmmeter (HIOKI 3227 or equivalent)

7. Temperature characteristic				
Specified Value	MB series	Inductance change : Within ±15%		
Specified Value	MB-H series			
Test Methods and	MB series : Measurement of inductance shall be taken at temperature range within $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$. With reference to inductance value at $+20^{\circ}\text{C}$., change rate shall be calculated.			
Remarks MB-H series : Measurement of inductance shall be taken at temperature range within $-40^{\circ}\text{C} \sim +125^{\circ}\text{C}$. With reference to inductance value at $+20^{\circ}\text{C}$., change rate shall be calculated.				

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

8. Resistance to flexure of substrate MB series Specified Value No damage MB-H series The test samples shall be soldered to the test board by the reflow. As illustrated below, apply force in the direction of the arrow indicating until deflection of the test board reaches to 2 mm. $: 100 \times 40 \times 1.0 \text{ mm} (1608:0.8 \text{mm})$ Test board size Test board material : Glass epoxy-resin Test Methods and Solder cream thickness : 0.1 mm Remarks Board 9. Insulation resistance : between wires MB series Specified Value MB-H series 10. Insulation resistance: between wire and core DC25V $100k\Omega$ min MB series Specified Value MB-H series DC50V $100k\Omega$ min 11. Withstanding voltage: between wire and core MB series Specified Value MB-H series 12. Adhesion of terminal electrode MB series Specified Value No abnormality. MB-H series The test samples shall be soldered to the test board by the reflow. Test Methods and Applied force : 10N (1608:5N) to X and Y directions. Remarks Duration : 5s. Solder cream thickness : 0.1mm 13. Resistance to vibration MB series Inductance change : Within $\pm 10\%$ Specified Value No significant abnormality in appearance. The test samples shall be soldered to the test board by the reflow. Then it shall be submitted to below test conditions. Frequency Range 10∼55Hz Total Amplitude 1.5mm (May not exceed acceleration 196m/s²) Test Methods and Sweeping Method 10Hz to 55Hz to 10Hz for 1min. Remarks Χ Υ Time For 2 hours on each X, Y, and Z axis. Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 14. Solderability MB series Specified Value At least 90% of surface of terminal electrode is covered by new solder. MB-H series The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux: Methanol solution containing rosin 25%. Solder Temperature 245±5°C Test Methods and Remarks Immersing speed 25mm/s Time 5 ± 0.5 sec.

XImmersion depth: All sides of mounting terminal shall be immersed.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Resistance to soldering heat MB series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MB-H series The test sample shall be exposed to reflow oven at 230°C for 40 seconds, with peak temperature at 260 + 0/-5°C for 5 seconds, 3 times. Test Methods and Test board material : Glass epoxy-resin Remarks Test board thickness : 1.0mm Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

16. Thermal shock							
C:G \/-	MB series			Inductance change : Within ±10%)%
Specified Value	MB-H se	eries	No significant a	abnorm	ality in app	earance.	
Test Methods and Remarks	MB serie The test The test specified sequence Step 1 2 3 4	ss: samples shall be soldered t samples shall be placed t time by step 1 to step e. The temperature cycle s Conditions of 1 Temperature (°C) -40±3 Room temperature +85±2 Room temperature	ified temperatur wn in below tab beated 100 cycle ation (min) 30±3 Within 3 30±3 Within 3	e for ble in s.	Step 1 2 3 4	samples st samples st samples st samples st time by e. The tem Temp Room Room	
		y : At least 2hrs of recover test, followed by the meas	•		uitiori		y:At leas test, follo

MB-H series:

The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified temperature for specified time by step 1 to step 4 as shown in below table in sequence. The temperature cycle shall be repeated 100 cycles.

Conditions of 1 cycle					
Step	Temperature (°C)	Duration (min)			
1	-40±3	30±3			
2	Room temperature	Within 3			
3	+125±2	30±3			
4	Room temperature	Within 3			

Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

17. Damp heat						
Specified Value	MB series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	MB-H series					
Test Methods and	The test samples s	all be soldered to the tes shall be placed in therr e and humidity as shown	mostatic oven set at	tic oven set at The test samples shall be placed in thermostatic oven set		
Remarks	Temperature	60±2°C		Temperature	85±2°C]
	Humidity	90∼95%RH		Humidity	85%RH	
	Time	1000+24/-0 hour		Time	1000+24/-0 hour	
	Recovery : At least 2hrs of recovery under the standard condition			Recovery: At least 2hrs of recovery under the standard condition		
	after the test, followed by the measurement within 48hrs.			after the test, followed by the measurement within 48hrs.		

18. Loading under damp heat						
C: E V-	MB series		Inductance change : Within ±10%			
Specified Value	MB-H series		No significant abnormality in appearance.			
	MB series:			MB-H series:		
	The test samples sh	all be soldered to the tes	t board by the reflow.	The test samples shall be soldered to the test board by the reflow.		board by the reflow.
	The test samples shall be placed in thermostatic ove			The test samples shall be placed in thermostatic oven set at		
	specified temperature and humidity and applied the rated curre			specified temperature and humidity and applied the rated current		
Test Methods and Remarks	continuously as shown in below table.			continuously as shown in below table.		
	Temperature	60±2°C		Temperature	85±2°C	
	Humidity	90∼95%RH		Humidity	85%RH	
	Applied current	Rated current		Applied current	Rated current	
	Time	1000+24/-0 hour		Time	1000+24/-0 hour	
	Recovery: At least 2hrs of recovery under the standard condition			Recovery : At least 2hrs of recovery under the standard condition		
	after the test, followed by the measurement within 48hrs.			after the test, followed by the measurement within 48hrs.		

19. Low temperature life test				
Specified Value	MB series		Inductance change : Within ±10%	
Specified value	MB-H series		No significant abnormality in appearance.	
	The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown			
Test Methods and	in below table.			
Remarks	Temperature	-40±2°C		
	Time	1000+24/-0 hour		
	Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.			

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

20. High temperatur	re life test			
Specified Value	MB series		Inductance change : Within ±10%	
	MB-H series		No significant abnormality in appearance.	
Test Methods and	The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown in below table.			
Remarks	Temperature 85±2°C			
	Time	1000+24/-0 hour		
	Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.			
21. Loading at high	temperature life test			
Specified Value	MB series			
	MB-H series			
22. Standard condit	ion			
Specified Value	MB series		Standard test condition: Unless otherwise specified, temperature is $20\pm15^{\circ}\text{C}$ and $65\pm20\%$ of relative humidity. When there is any question concerning measurement result: In order to provide correlatio data, the test shall be condition of $20\pm2^{\circ}\text{C}$ of temperature, $65\pm5\%$ relative humidity. Inductance is in accordance with our measured value.	
	MB-H series			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES ∕ MCOIL™ MB-H SERIES)

PRECAUTIONS

1. Circuit Design

Precautions

◆Operating environment

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

2. PCB Design

Precautions

- **♦**Land pattern design
- 1. Please refer to a recommended land pattern.

Technical considerations

◆Land pattern design Surface Mounting

- Mounting and soldering conditions should be checked beforehand.
- · Applicable soldering process to this products is reflow soldering only

3. Considerations for automatic placement

Precautions

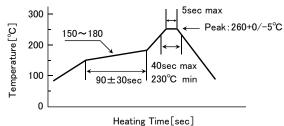
- Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards.
- 2. Mounting and soldering conditions should be checked beforehand.

l echnical considerations

- Adjustment of mounting machine
 - 1. When installing products, care should be taken not to apply distortion stress as it may deform the products.

4. Soldering

◆Reflow soldering


- 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.
- 2. The product shall be used reflow soldering only.

Precautions

- 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering.
- **♦**Lead free soldering
 - 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
- ◆Reflow soldering
 - 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.

Recommended reflow condition (Pb free solder)

Technical considerations

5. Cleaning

Precautions

- **◆**Cleaning condition
- 1. Washing by supersonic waves shall be avoided.

Technical considerations

♦Cleaning conditions

1. If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage condi	tions
Precautions	 ♦ Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Recommended conditions
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.