

To.

DATE :

RoHS 1,2 and 3	Halogen Free
----------------	--------------

SPECIFICATION

PRODUCT : STARCAP
MODEL : DL Series
(DL2R7107L)

WRITTEN	CHECKED	APPROVED

KORCHIP CORP.

KORCHIP B/D, 359, Manan-ro, Manan-gu, Anyang-si, Gyeonggi-do, KOREA
TEL : 82 - 31 - 361 - 8000
FAX : 82 - 31 - 361 - 8080

Index

Page No.	ITEM	etc.
1	Cover Page	
2	Index	
3	Revision History, Manufacturer Information	
4	1. Scope	
	2. Construction and Dimensions	
	3. Part Number System	
5	4. General Specifications	
6	5. Reliability Specifications	
7	6. Measuring Method of Characteristics	
8	7. Packing Specifications	
	8. Labeling Standards	
9-11	9. Cautions for Use	
12	10. Environmental Management	

Revision History

Manufacturer Information

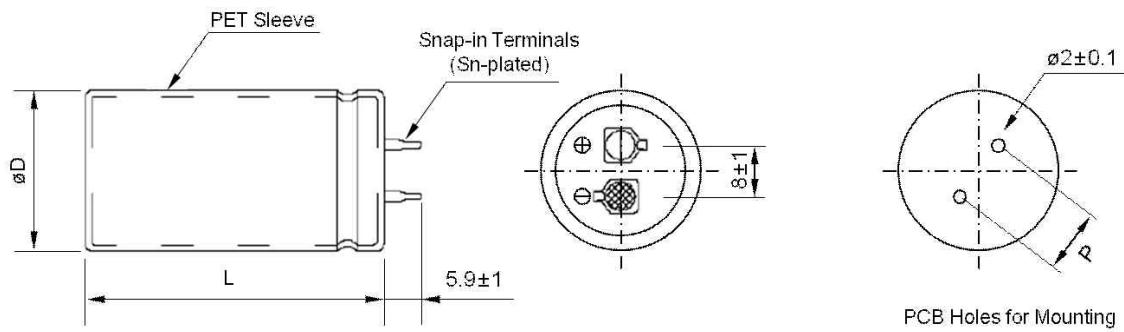
Manufacturer : Korchip Corporation

Location : KORCHIP B/D, 359, Manan-ro, Manan-gu, Anyang-si, Gyeonggi-do, KOREA

Tel. : +82-31-361-8000

Fax. : +82-31-361-8080

1. Scope


This specification applies to STARCAP(Electric Double Layer Capacitor), submitted to specified customer in cover page.

2. Construction and Dimensions (Unit : mm)

1) Structure of unit cell

- Inside structure : Wound anode and cathode electrodes with two separators
- Outer structure : Aluminum-can case and Bake-rubber cover

2) Shape and dimensions (not to scale)

Dimensions in mm	ØD	L	P
	22+1.0 max	46±2	10.0±0.2

3. Part Number System

DL 2R7 107 L
 ① ② ③ ④

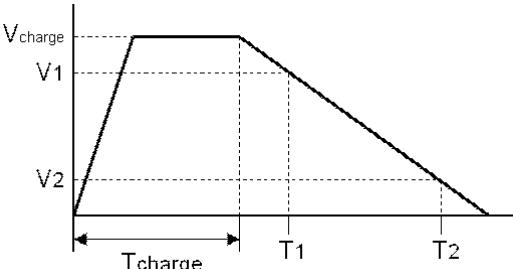
- ① Series Name : DL
- ② Rated Voltage : 2.7VDC
- ③ Capacitance : 100 F (107 = 10×10^7 uF)
- ④ Terminal Type Identification Code

4. General Specifications

ITEM	VALUE
Operating voltage	DC 2.7 V
Operating Temp.	-40 ~ +65 °C
Rated Capacitance	100 F
Cap. Tolerance (20°C)	0 % ~ +20 %
Equivalent Series Resistance (1KHz)	≤ 7 mΩ
Equivalent Series Resistance (DC)	≤ 9 mΩ
*Peak Current	61 A
**Rated Current	20 A
Leakage Current (72hr CV)	≤ 0.3 mA
Size (Ø × L)	Ø 22 × 46 mm(L)
Weight	≈ 23 g
Volume	17.10 ml
Stored Energy	365 J (0.1013 Wh)
***Energy Density	4.404 wh/kg
****Power Density	8.804 kW/kg

* Peak current is defined as the current with which a supercapacitor discharge from $V_{op.}$ to $\frac{1}{2}V_{op.}$ for 1 second

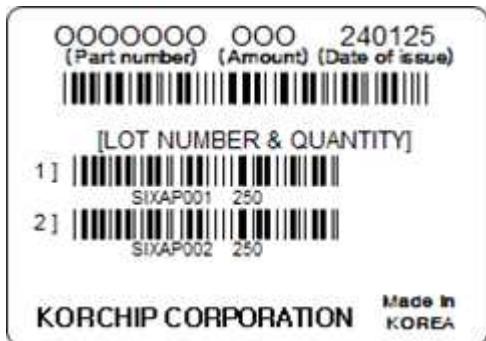
** Rated current is defined as the current with which a supercapacitor discharge from $V_{op.}$ to $\frac{1}{2}V_{op.}$ for 5 seconds


*** Energy density : $(0.5 \times C \times V_{op.} \times V_{op.}) / 3600$ / weight(Kg)

**** Power density : $(0.25 \times V_{op.} \times V_{op.} / R_{DC}) / \text{weight(kg)}$

5. Reliability Specifications

Item		Specification		Test Condition	
Temp. Characteristics	Capacitance Change	Step2	Within $\pm 20\%$ of Spec. Value	Measure electrical characteristics after exposing STARCAP Capacitor to each temperature atmosphere for one(1) hour	
	ESR		2 Times or less than Spec. Value		
	Capacitance Change	Step4	Within $\pm 20\%$ of Spec. Value		
	ESR		2 Times or less than Spec. Value		
	Capacitance Change	Step5	Within $\pm 20\%$ of Spec. Value		
	ESR		2 Times or less than Spec. Value		
Vibration Resistance	Capacitance	Within $\pm 20\%$ of Spec. Value		Amplitude : 1.5mm Frequency : 10~55Hz Direction: X,Y,Z 3direction Test Time : 6 Hrs	
	ESR	2 Times or less than Spec. Value			
	Appearance	No Marked Defect			
High Temp. Loading	Capacitance Change	Within $\pm 20\%$ of Initial Value		Temp : $65\pm 2^\circ\text{C}$ Voltage : 2.7VDC Test Time : 1,500 hours	
	ESR	2 Times or less than Spec. Value			
	Appearance	No Marked Defect			
Shelf Life	Capacitance Change	Within $\pm 20\%$ of Initial Value		Temp : $65\pm 2^\circ\text{C}$ Test Time : 1,500hours <u>No Load Applied</u>	
	ESR	2 Times or less than Spec. Value			
	Appearance	No Marked Defect			
Cycle Life	Capacitance Change	Within $\pm 20\%$ of Initial Value		1Cycle : Charge(20sec) → CV(10sec) → CC(1/2Vw, 20sec) → Rest(10sec) Total 500,000Cycles	
	ESR	2 Times or less than Spec. Value			
	Appearance	No Marked Defect			


6. Measuring Method of Characteristics

Capacitance	<p>1) Charge the STARCAP with constant current $I_{charge}(=1A)$ to $V_{charge}(=2.7V)$ then keep charging for $T_{charge}(=1200sec.)$</p> <p>2) Discharge the STARCAP with constant current $I_{disch}(=1A)$ while measure the discharge time T_1, T_2 between $V_1(=2.16V)$ and $V_2(=1.08V)$.</p> <p>3) Calculate capacitance using the following formula.</p> <p>The graph shows a trapezoidal voltage decay over time. The initial voltage is V_{charge}. It drops to V_1 at time T_1 and to V_2 at time T_2. The time interval between V_1 and V_2 is T_{charge}.</p> $C = \frac{I_{disch} \times (T_1 - T_2)}{V_1 - V_2}$
Equivalent Series Resistance (ESR @1kHz)	<ul style="list-style-type: none"> Measure ESR by the LCR meter. (Frequency:1kHz, Bias Voltage : $0^{+0.05}V$) <p>or</p> <ul style="list-style-type: none"> Calculate ESR using the following formula. <p>$R[\Omega] = V[V] / I[A] \quad * \quad i[mA] = I[A] \times 10^{-3}$</p> <p>$R$: Internal resistance(ESR)[Ω] V : Measured voltage between the terminal[V] i : Current 1mA ~ 10mA(A.C.)</p> <p>$ESR[\Omega] = V / i$</p>
<p> The STARCAP should be discharged with resistor for 12 hours or more before each measurement of Capacitance or ESR.</p>	

7. Packing Specifications

Part No.	Quantity (EA)	Size (W × L × H mm)	Weight(Kg)
	Inner Box	Box	
DL2R7107L	100	285×275×60	≈ 3

8. Labeling Standards

← (Example)

Lot No. System

Ex.) S J X A C 002

① ② ③ ④ ⑤ ⑥

- ① Product Code : S (Chipcell Carbon)
- ② Production Year Code : A (2016), B (2017), C (2018), ... , H (2023), I (2024), J (2025)...
- ③ Factory Identification Code : X (Factory X)
- ④ Production Month Code : A (Jan.), B (Feb.), ... , J (Oct.), K (Nov.), L (Dec.)
- ⑤ Production Date Code : 1 (1st), 2 (2nd), ... , 9 (9th), A (10th), B (11th), C (12th) ...
Q (26th), R (27th), S (28th), ... , V (31th)
- ⑥ Lot Issuing Serial Code : 001 (First lot of a specific day), 002 (Second lot of a specific day), 003 (Third lot of a specific day)...

9. Cautions for Use

Please be careful for following points when you use STARCAP.

1) Do not apply more than rated voltage.

If you apply more than rated voltage, STARCAP's electrolyte will be decomposed and its ESR increase. At the worst, it may be broken.

2) Do not use STARCAP for ripple absorption.

3) Polarity

Please mount it in accordance with its polarity.

4) Operating environment and lifetime

STARCAP shows faster deterioration in high temperature operation. The lifetime of STARCAP follows the general lifetime acceleration rule of double or half per every 10°C of ambient temperature decrease or increase respectively. A large temperature difference in one day or humid operating environment results in dew condensation on the surface of STARCAP and it may cause fast deterioration or electrolyte leakage of STARCAP.

If STARCAP capacitor is used in an electronic or electrical device over a long period of time especially in high temperature or high humidity environment, please check it periodically and replace it when necessary.

5) Storage

In long term storage, please store STARCAP in following condition;

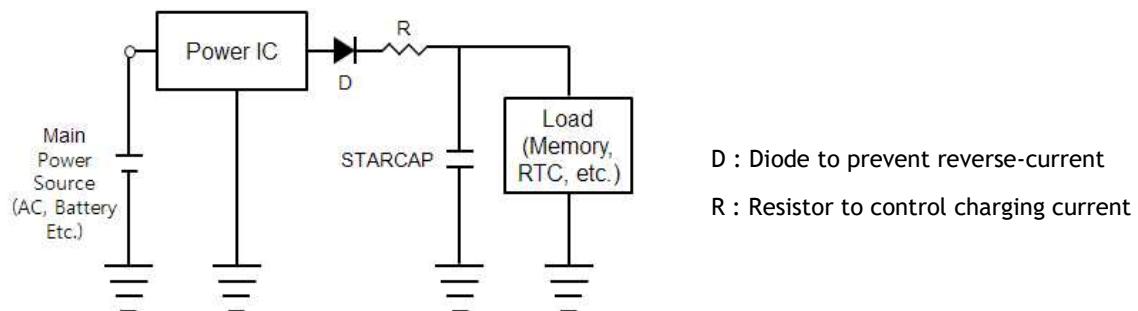
- ① TEMP. : 15 ~ 35 °C
- ② HUMIDITY : 45 ~ 75 %RH
- ③ Non-dust, non-acidic and/or non-alkaline atmosphere
- ④ Avoid direct sun light, strong magnetic field

Storage period limit is one(1) year when a STARCAP is stored in the above condition.

Storage in improper condition may cause some damage on terminal surface or on outer tube of STARCAP. If the storage period exceed one(1) year in the customer's warehouse, please contact the manufacturer.

6) Do not disassemble STARCAP. It contains electrolyte.

7) Cleaning


Some detergent or high temperature drying causes deterioration of STARCAP.

If you wash STARCAP, Consult us.

8) Avoid mechanical impacts such as dropping on the floor or touching with a hard blade. Also avoid tearing of sleeves and waving of lead wire.

9) Please contact KORCHIP if you want to subject STARCAP to severe vibrating conditions exceeding rated specification or use under mechanical and electrical stress conditions.

10) Following figure shows the general back-up circuit using STARCAP.

11) Short-circuit STARCAP

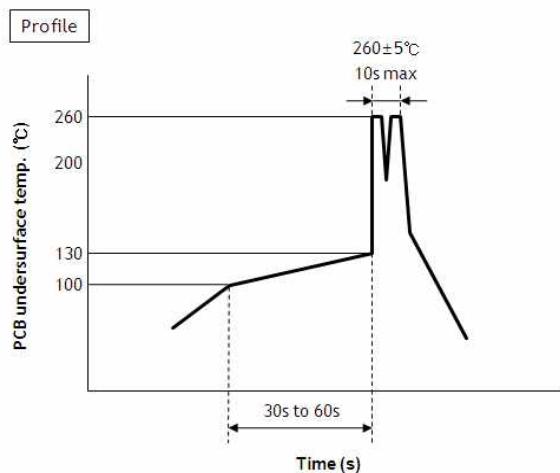
Do not short-circuit between terminals of STARCAP without resistor.

12) Series connection of STARCAP

Over-rated voltage may be applied to a single STARCAP in series connection due to the deviation of electrical characteristics such as capacitance, LC and ESR of each STARCAP. Please inform us if you are using STARCAPs in series connection and please design so as not to apply over-rated voltage to each STARCAP, and use STARCAPs from same lot.

13) Industrial Application

Some industrial applications require a very high level of reliability to its parts including EDLCs. Therefore if the EDLC is to be used in an industrial application such as factory machinery, heavy electricity, etc. periodic inspection of EDLC is necessary. If there found any problem with the EDLC, please replace it.


14) Please maintain minimum distance of 5 mm between the surface of STARCAP and the housing in order to allow for unimpeded venting of gas through the safety vent if and when such need arise.

15) Manual Soldering

When you solder STARCAP on PCB using a solder iron, Please do it quickly within 3 sec., below 350 °C.

Please don't touch the body of STARCAP with the solder iron.

16) Flow Soldering Condition

- Do not dip the capacitor into melted solder.
- Do not flux other part than the terminals.
- If there is a direct contact between the sleeve of capacitor and printed circuit pattern or a metal part of another component such as a lead wire, it may cause shrinkage or crack.
- If the application is for extended use, understand and manage the soldering characteristics to avoid abnormal current caused by a contact failure between the capacitor and the PCB.

10. Environmental Management

All STARCAP products are RoHS 1, 2 and 3 compliant, Halogen Free and environment friendly.

Series	RoHS 1,2 directive (Pb, Cr+6, Hg, Cd, PBB, PBDE)	ELV directive (Pb, Cr+6, Hg, Cd)	PVC	Halogen Flame Retardant Free (Cl, Br)	RoHS 3 directive (DEHP, BBP, DBP, DIBP)	etc.
DL	N.D.	N.D.	N.D.	N.D.	N.D.	

* N.D. : Not Detected or Within Permitted Range